Eloquence

Eloguence SORT Manual
B.06.32

Edition E1202
© Copyright 2002 Marxmeier Software AG.

Legal Notices

Legal Notices

The information contained in this document is subject to change without notice.

MARXMEIER SOFTWARE AG MAKES NO WARRANTY OF ANY KIND

WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE. Marxmeier Software AG shall not be liable for
errors contained herein or for incidental or consequential damages in connection
with the furnishing, performance or use of this material.

This document contains proprietary information which is protected by copyright.
All rights reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as
set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013. Rights for non-DOD U.S. Government
Departments and Agencies are as set forth in FAR 52.227-19 (c) (1,2).

Acknowledgments
© Copyright Marxmeier Software AG 2002. All Rights Reserved.

Marxmeier Software AG
Besenbruchstrasse 9
42285 Wuppertal
Germany

Eloquence is a trademark of Marxmeier Software AG in the US and other coun-
tries.

© Copyright Hewlett-Packard Company 1990-2002. All Rights Reserved.

This software and documentation are based in part on HP software and documen-
tation under license from Hewlett-Packard Company. HP is a trademark of
Hewlett-Packard Company.

Printing History

Printing History

The manual printing date indicates its current edition. The printing date will change
when a new edition is printed. Minor changes may be made at reprint without
changing the printing date. New editions are complete revisions of the manual.The
dates on the title page change only when a new edition or a new update is pub-
lished.

Manual updates may be issued between editions to correct errors or document
product changes. Manuals that are published on the Eloquence website (www.hp-
eloquence.com/doc) may be updated more often, please visit this website periodi-
cally for the most recent versions. To ensure that you receive the updated or new
editions, you should also subscribe to the appropriate product support service.

The software code printed alongside the date indicates the version level of the soft-
ware product at the time the manual or update was issued. Many product updates
and fixes do not require manual changes and, conversely, manual corrections may
be done without accompanying product changes. Therefore, do not expect a one to
one correspondence between product updates and manual updates.

First Edition July 1991 A.03.00

Second Edition February 1992 A.03.10
Third Edition January 1997 A.06.00
Fourth Edition October 1997 A.06.00
Fifth Edition (E1202) December 2002 B.06.32

Printed in the Federal Republic of Germany.

Printing History

Contents

Table of Contents

1

Introduction 7
Overviewof chapters 8
Whatis SORT ? e 9
Specifying database Structure 10
TheWorkfile 12
Putting Data into Sorted Order 14
SelectingData 16
Specifying Complex database Structures 18
Sort Statements and Functions 25
Introduction 26
Conventions 27
The WORKFILE IS # Statement 28
The SORT BY Statement 31
The FIND Statement 32
The QFIND statement 34
The WFLEN Function 37

The READ # and PRINT # Statements 38

Contents

SORT Order of Execution 40
Program Examples 41
Order ListProgramsc.ccuvivienn... 42
Iltemized Order List Programs 47
Programming Considerations 57
Introduction 58
Software Optimization 59

Schema Listing for the SAD Data Base 63

Appendix B SORT Error Codes 67

Introduction

Introduction
Overview of chapters

Overview of chapters

Chapter 1 presents a brief overview of SORT terms and concepts. Chapter 2
describes the syntax of the various statements and functions. Chapter 3 lists sam-
ple programs using SORT. Chapter 4 covers optimization techniques.

This manual is intended for the programmer who is familiar with both the Elo-
guence Language Programming Manual and the DBMS Programming Manual.

Introduction
What is SORT ?

What is SORT ?

SORT is a collection of Eloquence statements and functions to facilitate the
retrieval of information from an Eloquence database. There are statements avail-
able which allow you to access data in sorted order, and to select subsets of the
total information available.

In addition, SORT enables you to set up simulationed structures more complex
than the two-level networking supported by Eloguence databases. SORT enables
the program to access a database in a hierarchical fashion. Simple data sets can
also be handled, as can certain non-hierarchical structures.

Introduction
Specifying database Structure

Specifying database Structure

Before you begin any actual database access via SORT, you have to specify the
structure of that portion of the database you want to use. You specify this structure
as a list of set names. If you wish you can separate them using information con-
cerning their inter-relationship. This list is called theead The thread specifica-

tion describes the hierarchical (or other) structure on which SORT statements
operate.

SORT operations are used to extract information according to the thread specifica-
tion. This information is in the form of record pointers which the program uses in
direct-mode DBGETSs to obtain the actual information from the database. The
thread may contain from one to ten sets, depending on the particular application.

The diagram below shows the example Sales Analysis database. Among reports
which you could obtain are:

1 Alist of all orders.
2 Alist of products plus the orders placed for that product.

3 Alist of products and orders, as above, but including the options contained with each
order.

To produce report 1, only the CUSTOMER data set is involved. The thread list for
such a structure would consist only of CUSTOMER. Report 2 involves the data
sets PRODUCT and CUSTOMERS, while 3 involves the sets PRODUCT, CUS-
TOMER and OPTION.

Details of how to generate these are contained later in this chapter, along with the
program to generate report 1. In chapter 3 you will find complete sample pro-
grams for reports 2 and 3.

10

Introduction
Specifying database Structure

Product Location Date Order
Product-No. Region Date Order-No.
Region-Desc
Prod-Desc ,
Region-Type

Order—No.
MName
Address
City
State
Country
Zp—Code
Order-Date
Ship-Date
Regian
Product-NO
Price
Salesperson

Customer

Figure 1 Sales Analysis Data Base

COrder—No.
Option-Desc
Cption-Price

, Option
Option-Type

11

Introduction
The Workfile

The Workfile

With SORT you create a specific access sequence to the database. You do not
actually change the sequence of the data in the data base itself. What you do is to
build a series gpointersto the various records of each set in the thread. These
pointers are stored in a special file calledwlekfileand can be used with direct-
mode DBGETSs to extract information from the database. If, for example, you
want to produce a report listing all orders plus the company placing each order
(see the next report), you could use a program like the one shown next. This pro-
gram opens the Sales Analysis database, sets up a workfile, sorts the data by order
number and prints the results. (Note that the order shown in the sample run below
is, in fact, correct since the items being stored are stiogaumerics).

10 DIM Buf$[170],B$[5],0Order_no$[10],Names$[30]

20 INTEGER S(9) I Ten-element status array.

30 B$="SAD"

40 DBOPEN (B$,"SECRET",3,S(*)) ! Open the database.

50 DBASE IS B$

60 IN DATA SET "CUSTOMERS" USE Order_no$,Name$
70 ! Now set up a workfile with CUSTOMER as the thread.

110 ! Sort the orders by order number.

140 PRINT " ORDER NUMBER";TAB(30);"CUSTOMER NAME";LIN(2)
150 FOR I=1 TO Entry_count
160 ! Read the record pointer into Rec_no.

180 DBGET (B$,"CUSTOMER",4,S(*),"@",Buf$,Rec_no)
190 PRINT Order_no$;TAB(30);Name$

200 NEXT I

210 DBCLOSE (B$," ",1,S(*))

230 END

RUN

ORDER NUMBER CUSTOMER NAME
10 ABC Company

100 Colorado Feed and Grain
12.6 Bruce’s Bar & Grill

17.2 Timmy's Pet Store

20 ABC Company

999 Internal Revenue Service

In many respects, the workfile is just like a regular data file. It must be CREATEd
and ASSIGNed just like a DATA file. Only its use in the program distinguishes it
as a workfile. After the program defines a file as a workfile, it remains that way

12

Figure 2

Introduction
The Workfile

until either it is de-ASSIGNed or the program stops. Since the workfile is so simi-
lar to a normal data file, most of the standard file operations work on it. Record
pointers are read from the workfile with the READ # statement, and pointers may
be added to it using PRINT #. The next figure shows how the contents of the
workfile are related to the base entries used in the previous example.

Record Customer Detail Waorkfile
Numbers 4 5
Order # 17.2
2 Tirmy' s pet store e
3 4
Order # 12.6 =
4 Bruce's bar and grill
5 Order # 10 8
ABC company
Order # 100 11
6 Colorado feed and grain
7
a Order # 20
ABC company
S
10
Order # 999
M | hternal revenue service

Data Base/Workfile Relationship

13

Introduction
Putting Data into Sorted Order

Putting Data into Sorted Order

The SORT BY statement allows you to specify a sort using up to ten data items
from any data set in the thread. If a sequence of two elements cannot be deter-
mined on the basis of the first field, the second, the third, and so on, will be com-
pared until a sequence can be found. If no sequence is found, the pointers into the
database are compared in order to determine sequence. Additionally, sort direc-
tion is specifiable on each sort field on an individual basis. Any field may be suf-
fixed by the keyword DES to cause the sort to be in descending order rather than
ascending.

Here is the same program shown earlier, but with some additional statements
filled in:

In this example, lines 80 thru 100 are used to create a file, ASSIGN it to a file
position and convert it into a workfile. (Note that the file is still of type DATA.)

Line 120 produces pointers so the data can be accessed in sorted order. Line 170
reads the pointer into an Eloquence variable so it can be used in the direct mode
DBGET in line 180.

One additional function has been introduced in this example, the WFLEN func-
tion used in line 130. This function returns the number of pointers in the workfile.

It has as an argument, the file number of the workfile, since more than one work-
file may be in use at a given time. Notice that the program creates and purges the
workfile each time the program is run. If disk space is available, program execu-
tion time can be decreased by deleting lines 80 and 220, which allows the file to
remain on the disk.

10 DIM Buf$[170],B$[5],0rder_no$[10],Name$[30]

20 INTEGER S(9) I Ten-element status array.

30 B$=" SAD"

40 DBOPEN (B$,"MANAGER",3,S(*)) ! Open the database.
50 DBASE ISB$

60 IN DATA SET "CUSTOMER" USE Order_no$,Name$

70 ! Now set up a workfile with CUSTOMER as the thread.
80 FCREATE "XYZ",0

90 ASSIGN "XYZ" TO #1

100 WORKEFILE IS #1;,THREAD IS "CUSTOMER"

110 ! Sort the orders by order number.

120 SORT BY Order_no$

130 Entry_count=WFLEN(1) !WFLEN returns no of pointersinfile.
140 PRINT " ORDER NUMBER";TAB(30);"CUSTOMER NAME";LIN(2)
150 FOR I=1 TO Entry_count

160 ! Read the record pointer into Rec_no.

170 READ #1;Rec_no

180 DBGET (B$,"CUSTOMER"4,S(*),"@",Buf$,Rec_no)

190 PRINT Order_no$:TAB(30);Name$

200 NEXT I

14

Introduction
Putting Data into Sorted Order

210 DBCLOSE (B$," ",1,S(*)
220 PURGE "XYZ"
230 END

15

NOTE:

Introduction
Selecting Data

Selecting Data

Frequently only a small portion of the total available space is of interest for pro-
cessing purposes. SORT provides the FIND statement to select only those entries
in the hierarchy which are relevant. This selection can involve data available at
any level of the hierarchy and may use an arbitarily-complex selection criterion
involving any function available in an Eloquence expression.

When a FIND is executed, pointers to some subset of the records in the hierarchy
are put in the workfile. Only the pointers of records which meet the selection crite-
ria are put in the workfile. If there are already pointers in the workfile from exe-
cuting previous FINDs (or SORTS), the subset described by these pointers is used
in successive FINDs and SORTSs, rather than all the information present in the
database.

Suppose, in the above example, you wanted to list only the orders for ABC Com-
pany. You could do this by inserting a FIND statement somewhere between line
100 and line 130 to select only those customers. Thus you could produce a report
for just ABC Company by adding:

115 FIND TRIM$(Name$)="ABC Company"

This line could also have gone after the SORT BY in line 120, since executing a
FIND does not change the sequence produced by the last SORT BY. Note the use
of TRIMS$. This is necessary because FIND works like a direct-mode DBGET.

The unpacking procedure performed by IN DATA SET will leave any trailing
blanks on the string.

Suppose, now, that you want to put an additional restriction on the set of orders in
the report. The report should contain only orders from ABC Company and those
with a “2” somewhere in the order number. You can do this in either of two ways.
You can add another FIND statement specifying the additional restriction between
lines 100 and 130. Or you can change line 115. The first method might produce a
line like:

125 FIND POS(Order_no$,"2")<>0

Now one of the FINDs is before the SORT BY and one is after it. Both could also appear
before or both after the SORT BY.

The second method is a more efficient way. The fewer FIND statements executed
the better, since then each data entry need be examined only once. (This is the
usual case. More details on the best way to optimize FINDs are presented in
Chapter 4.) This method might have produced a replacement for line 115 such as:

16

Introduction
Selecting Data

115 FIND (TRIM$(Name$)="ABC Company") AND (POS(Order_no$,"2")<>0)

17

Introduction
Specifying Complex database Structures

Specifying Complex database Structures

As indicated earlier, it is sometimes useful to sort or find records spread over sev-
eral data sets when those data sets logically represent a hierarchy. The thread
parameter on the workfile statement allows you to do this. The thread is basically
a list of the sets in the order they occur in the hierarchy.

The following figure shows one master with three detail sets linked to it.

Figure 3 Multiple Two-Level IMAGE Structure

Threads defined in the above IMAGE Structure
{A} or {B} or {C} or {D}
{A,B} or {B,A} {A,C} or {C,A}

{B,A,C}or {C,A,B}

18

Introduction
Specifying Complex database Structures

Notice that detail data set D has two data paths to the same master. In this case,
linking set A to set D is ambiguous. To resolve this ambiguity, it is necessary to
specify which path is involved. Adding this capability to the thread specification
allows the description of the following additional threads:

Additional Threads

{A (via path 1) D (via path 2) A}

{A (via path 2) D (via path 1) A}

{D (via path 1) A (via path 2) D}

{D (via path 2) A (via path 1) D}

{C,A (via path 1) D (via path 2) A,B}

{B,A (via path 2) D (via path 1) A,C}
etc.

Remember that although all these threads can be defined, they may not make any
sense! It is the programmer’s responsibility to determine the sense of a thread.

For another example, see the three reports on page 1-2. Generating report 2
involves using two sets. The thread that describes this hierarchy is specified as a
list of PRODUCT and CUSTOMER. Report 3 involves three sets (PRODUCT,
CUSTOMER and OPTION). The structures involved in all these reports are hier-
archical in nature. In report 2, for example, the PRODUCT data set is higher in
the hierarchy than CUSTOMER. Report 3 is an example of a three-level hierar-
chy. The next figure shows how the hierarchy for report 3 is organized.

19

Introduction
Specifying Complex database Structures

Product Produst Mo. Product Mo.
Information 100 500
G 10#
Customer |Order No. Order No. Order Mo,
Information | 17 B4 1241
b# T# B
Cptlon Option| | Option COption Cption | | Optien| | Option
B A G F E a
Information - 14 4 c - e

denotes record numbers

Figure 4 Sample Three-level Hierarchy

Unlike report 2, where there is a direct connection between PRODUCT and CUS-
TOMER, there is no connection between CUSTOMER and OPTION. This is why
the ORDER master data set exists. The thread necessary for accessing this three-
level hierarchy consists of four sets which are specified in the order PRODUCT,
CUSTOMER, ORDER and OPTION. See the next figure.

Product Order

Customer Option

Figure 5 Simulation of a Three-level Hierarchy

20

Introduction
Specifying Complex database Structures

A sample output for report 3 is shown next. Notice that information is obtained
from the product data set (product number and description), as well as from each
of the other sets. Graphically, this information is organized as shown on page 1-8.
The numbers in the corner of the boxes correspond to the records where the infor-
mation is stored in the database. Entries for the ORDER detail are not shown,
since the ORDER set contains no information relevant to producing the report.

OUTSTANDING ORDERS LIST

PRODUCT NO. ORDER NO. CUSTOMER NAME OPTIONS PRICE
100(STD BICYCLE) 17,3 XYZ Company A 10,25
B 20,31
30,56
18,4 XYZ Company C 30,97
30,97
TOTAL 100 ORDERS: 61,53
500(5-SPEED) 19,1 ABC Company E 132,05
F 100,10
Q 1,23
224,38
TOTAL 500 ORDERS: 224,38
TOTAL ORDERS: 285,91

To produce report 3, it is necessary to extract this information from the database
(record numbers from the figure titled “Sample Three-level Hierarchy” .)

Table 1 Information to extract to get report 3
Set Name Record to Read Action to Take
Product 5 Print header product.
Customer 5 Print header for order.

21

Introduction
Specifying Complex database Structures

Table 1 Information to extract to get report 3

Set Name Record to Read Action to Take
Option 1 Print first option.
Option 2 Print last option and total.
Customer 7 Print header for new order.
Option 4 Print option and totals.
Product 10 Print header for new product.
Customer 8 Print header for order.
Option 3 Print first option.
Option 6 Print second option.
Option 5 Print last option and totals.

The numbers stored in the workfile, however, always contain one record from
each set. Thus, the first record will contain the three order number pointers and the
pointer to the ORDER set.

The subsequent record is the same except that the pointer for the option set is
changed to 2. The next figure shows the pointers as they are stored in the workfile.

22

Figure 6

Introduction
Specifying Complex database Structures

Pointer to information - 6,5, -, 1 ——1—— Pointer to information
in “product” 5 5 - 2 in "option”

5 7, -, 4

''_'_'_'_'_,_,,—

Pointer to information 10, 8, -, 3 Pointer to information
in "customer” in "order”

10, 8, -, & falue cannot be

10,8, -, 5 d?termmed from

given datal

Contents of Workfile after Sorting

Note that one pointer for each set is always stored. If a record at one level of the
hierarchy has no records associated with it at the next lower level, there is no way
to store a record of pointers in the workfile relevant to that record. In particular, if
the records surrounded by a box in the figure titled, “Sample Three-level Hierar-
chy” are deleted, product 500 has no order associated with it and order 18,4 has no
associated options. The workfile would then have only two records corresponding
to the bracketed records in the next figure. Further, if the options on order number
17,3 were deleted, FIND or SORT would return an empty workfile.

The program to produce the outstanding order list is fairly complex, as shown in
Chapter 3. However, the skeleton for the program is shown next. This skeleton
reads four pointers from the workfile even though the third pointer (to the auto-
matic master set ORDER) is not used. Also, note that this skeleton repeatedly
reads records from the PRODUCT and CUSTOMER data set even though it may
be reading the same record as on the previous pass through the loop. For clarity’s
sake, the code to optimize out the extra reads is not shown.

ASSIGN "XYZ" TO #1
WORKEFILE IS #1;THREAD IS "PRODUCT","CUSTOMER","ORDER","OPTION"

IN DATA SET "CUSTOMER" USE ALL
IN DATA SET "OPTION" USE SKP 1,0ption_desc$,PO

23

Introduction
Specifying Complex database Structures

SORT BY Product_no, Order_no$,Option_desc$

FOR L=1 TO WFLEN(1)

READ #1;R1,R2,R3,R4

DBGET (Base$,"PRODUCT" 4,S(*),"@",Buf$,R1)
DBGET (Base$,"CUSTOMER",4,S(*),"@",Buf$,R2)
DBGET (Base$,"OPTION",4,S(*),"@",Buf$,R4)

NEXT L

24

Sort Statements and Functions

25

Sort Statements and Functions
Introduction

Introduction

This chapter describes the syntax needed to use SORT software. The statements
and functions provided with SORT are:

WORKFILE IS # A statement specifying the hierarchical structure (thread) of
the data sets to be sorted, the work space for sorting, and the
workfile itself.

SORT BY A statement specifying the order in which data is to be sorted.

FIND A statement used to select a subset of record pointers from the
data base or the current workfile.

QFIND A statement used to select a subset of record pointers from the
data base.

WFLEN A function returning the number of logical records in the work-
file.

Two IMAGE statements, DBASE IS and IN DATA SET, are used to define the
data base and data sets before unpacking data entries with SORT.

In addition, many Eloquence file storage operations (PRINT #, READ #, REC,
etc.) are used in conjunction with SORT workfiles. Because of the workfile struc-
ture, these operations may work differently with SORT than as described in the
Eloqguence Manual. These differences are covered near the end of the chapter.

26

Sort Statements and Functions
Conventions

Conventions

The following conventions are used:

Bold type is used when a new term is introduced.

Computerfont indicates text to be input exactly as shown or text that is output from
the system.

Italic typeis used for emphasis and titles of publications. It is also used to indicate pa-
rameters that are user defined.

KEYCAP represents a key on the keyboard.
Shading represents the softkeys displayed on the computer scren.
...indicates that the previous variable can be repeated.

[] indicates that information inside the brackets is optional. If there are brackets within
brackets, the parameter within the inner bracket may only be specified if the parameter
in the outer bracket is specified. Parameters may also be stacked in brackets. For exam-
ple A or B or neither may be selected when the following is shown:

o]
B
{} indicates that one of the choices stacked within the braces must be selected from

those stacked within braces. For example A or B or C must be selected when the fol-
lowing is shown:

BA
B0

0.0
o

27

Sort Statements and Functions
The WORKFILE IS # Statement

The WORKFILE IS # Statement

The WORKFILE IS # statement describes the hierarchical structure on which
FIND, QFIND and SORT will operate, where the scratch area is for SORT, and
where the results of executing a FIND, QFIND or SORT are stored.

WORKEFILE IS #file numbel{ ;THREAD IS

fetia [LINKINK) 7 et ia] thread st
:path id

(up to 10 sets allowed)

The parameters are:

file number A numeric expression having an integer value from 1 though
10, and used to identify a file previously defined by an ASSIGN
statement.

set id A numeric or string expression used to identify a data set. If

numeric, this parameter references a data set number for the
current data base (specified in the last DBASE IS statement). If
a string, this parameter references a data set name for the cur-
rent data base.

path id A numeric expression having an integer value from 1 through
8. This expression selects which data path to use between the
first data set specified (set id) and the next in the thread list. It is
needed only when more than one path exists between two sets
being linked in the thread. If only one path exists for the data
set specified, it is not necessary to list the path id parameter.

link An Eloquence variable which is currently linked via an IN
DATA SET statement to an item found in the detail data set to
which itis attached. The variable must match in type and length
the search item in the master data set which follows in the
thread list. If the variable refers to a sub-item, it may only be
the first sub-item.

28

NOTE:

Sort Statements and Functions
The WORKFILE IS # Statement

The path or link parameters cannot be specified on the last data set in the thread list, since
these operations specify a relationship between the set to which it is attached and the next
set listed in the thread.

Some examples of the WORKEFILE IS # statement are:

WORKFILE IS#1; THREAD IS"CUSTOMER"

WORKFILE IS#X+3; THREAD IS "CUSTOMER":2, "DATE"

WORKFILE IS#8; THREAD IS "CUSTOMER":2, "ORDER"
Up to 10 data sets can be specified for any thread list. The number of sets in the
list is referred to as ththread length. Each set must be related to the sets on
either side of it (or one side if it is at the end of the thread) by a path in the data
base (or aynthetic path using the LINK option). This defines the hierarchical
structure, with the leftmost set in the thread list usually being the highest (usually
the least commonly occuring) in the hierarchy. Successful execution of WORK-
FILE IS # converts the file into a workfile. To convert a file to a workfile, the file
must be ASSIGNed in exclusive mode. The file remains a workfile until either
another file is assigned in its place (same file number) or it is de-assigned. Closing
the data base to which the workfile pertains automatically de-assigns the workfile.

The workfile is used to store all pointers generated by FIND, QFIND and SORT
BY operations. Initially, the workfile contains no pointers, so any attempt to
access them (via READ #) will result in an error. The REC function returns 0 to
indicate this null state. Pointers can be put in the workfile by executing SORT BY,
FIND, QFIND, FIND ALL or PRINT #.

The workfile is composed of logical records whose lengths in bytes are 4 times the
thread length. Thus, a 4-byte pointer is stored for each set in the thread in any
given logical record. Pointers may range in the value from 1 to the capacity of the
set to which they pertain. (The first pointer in the record corresponds to the first
set in the thread, the second pointer corresponds to the second set, and so on.)

In the case where more than one path connects two adjacent sets in the thread, it is
necessary to specify which path is to be used. This is done by suffixing the first of
the sets with a “:” and following that with a path id. The path id for a particular

path is determined by using the schema listing. To find the path with patford
example, scan the detail for thiéh occurrence of the master set name. If the path

id is not specified, 1 is assumed.

A method exists for defining data set relationships independent of the data base
structure. This method is used to link a detail data set to a master data set in the
thread list. This is done by using the LINK option, which specifies an item in the
detail data set and is used to perform a calculated access into the specified master
data set. This item must match the type and length of the search item in the master
data set (which is then the set id following the LINK in the thread list).

29

Sort Statements and Functions
The WORKFILE IS # Statement

All SORT BY, FIND and QFIND operations work with the current workfile. Exe-
cuting another WORKFILE IS # deactivates the current workfile and defines a
new one. All subsequent SORTs, QFINDS and FINDs then work on the new file.
The information in the old workfile is still intact, however, and can be accessed
via READ # and PRINT # statements.

Since it may by desirable to return to do additional FINDs and SORTSs on the pre-
vious workfile, a method is provided for saving and reactivating a workfile. This
is done by executing another WORKFILE IS # which does not include the thread
list. This will deactivate (but not erase) the current workfile and allow you to acti-
vate an old workfile. Do not attempt to reactivate the workfile by respecifying the
thread list, since this loses all information currently in the file by resetting
WFLEN to 0.

Expressions are allowed in all WORKFILE IS # parameters. When invoking mul-
tiple-line function subprograms, however, these subprograms cannot execute
SORT BY, FIND, WORKFILE IS #, IN DATA SET or DBASE IS statements.

30

Sort Statements and Functions
The SORT BY Statement

The SORT BY Statement

The SORT BY statement generates pointers accessing data in a specified order.
SORT BYvariable namgDEY] [,..., variable namgDE]]
The parameter is:

variable name An Eloquence variable linked via the IN DATA SET statement
to an item appearing in one of the data sets in the thread. Sub-
strings are not allowed.

Sorting can occur on up to ten data items. If an order cannot be determined from
the first data item, subsequent data items can be specified to determine the order.
If no order can be found, the order for those records will be determined by their
record pointer value(s) in the data set(s). The specified data is sorted in reverse
order by specifyindES Each data item listed can be sorted in either order.

Data items used for sorting can come from any data set belonging to the thread of
the current workfile. When listing the data items in the SORT BY statement, you
must place them in order of their significance to the sort, not in their original set
order. If an item occurs in two data sets in the thread, the item will be assumed to
come from the leftmost set.

Since SORT BY and FIND handle record pointers in the data base, and other users
may be modifying the data base, care should be taken when using FIND and
SORT BY while the data base is opened in mode 1.

There are a couple of miscellaneous items concerning SORT BY. The first is that
executing a SORT BY resets the workfile pointer (as determined by REC) to 1.
The second is that if SORT BY is reading the data base via pointers in the workfile
(rather than accessing the data base directly) and records in the data base have
been deleted since the FIND, SORT or PRINT # that put the pointers there, then
any logical workfile record which contains a pointer to a deleted data set record
will be deleted. This is true only when SORT BY accesses the set in which the
deletion occurred. If there is no sort item needed from that set, SORT BY will not
perform the read to determine if a deletion has occurred.

Some example sequences using SORT BY are:
SORT BY Order_no$
SORT BY Product_no$,Name$ DES

31

Sort Statements and Functions
The FIND Statement

The FIND Statement

The FIND statement selects a subset of records from the data base thread or the
current workfile if the workfile is non-empty.

0 0
FIND - ..o
Leonditiond

The parameter is:

condition Any numeric expression used to test variables (or any attribute)
for certain conditions. If these conditions are met, the expres-
sion has a non-zero (true) result and the record pointers are
stored in the workfile. Otherwise, the result is O and the record
pointers are not stored.

If the workfile has not been used with any previous FIND or SORT BY operation,
FIND examines the data base associated with the current workfile. The condition
parameter is evaluated to determine whether the group of data entries just read
should have their pointers put in the workfile. If the condition is met, the pointers
are stored and the next group of entries are processed. Otherwise, the pointers are
not stored and processing continued. Note that FIND must actually read each
record and trigger the IN DATA SET for each set in the thread to establish the
variable values it needs to evaluate the condition expression.

If the workfile already contains pointers (indicated by REC greater than 0), only
the data entries specified by the pointers in the workfile are checked by the condi-
tion parameter. Pointers to data entries that meet the condition criteria are retained
in the workfile; all other pointers are deleted.

Since FIND handles record pointers in the data base, and since other users may be
modifying the data base, care should be taken when using FIND while the data
base is opened in mode 1.

Specifying FIND ALL is the same as FIND 1=1, and is useful to get all records in
unsorted order. If a subsequent FIND or SORT BY is used, however, the FIND
ALL is not needed and only wastes time. If a FIND, SORT BY, or PRINT # has
previously been done, FIND ALL has no effect except to reset the record pointer
to record 1.

32

Sort Statements and Functions
The FIND Statement

There are two miscellaneous items concerning FIND. The first is that executing a
FIND resets the workfile pointer (as determined by REC) to 1. The second is that
if FIND is reading the data base via pointers in the workfile and deletions have
occurred in sets involved in the FIND, then FIND will delete the logical workfile
records containing pointers to empty data set records.

NOTE: If the condition parameter does not use values from a particular set in the thread (via an IN
DATA SET statement), execution time can be improved by deacticating the IN DATA SET
statement using the FREE option.

Some examples sequences using FIND are:

FIND TRIM$(Order_no$)>"1000"
FIND (Vendor_no>250) AND (Invoice_no>10000)
FIND ALL

33

Sort Statements and Functions
The QFIND statement

The QFIND statement

The QFIND statement selects a subset of records from the data base thread.

QFIND item, relation, valué¢ ;expr]

or:

QFIND item"IN", valuel, value? ;expi

or:

QFIND iitem,"MATCHESregular expression

The parameters are:

item

relation

value

expr

A numeric expression specifying an (index) item number or
string expression specifying (index) item name. The specified
(index) item must be in the first dataset of the THREAD list.

A string expression specifying the test to be performed on the
given index item.

">" or"GT" - greater than

">=" or"GE" - greater or equal

"=" or"EQ" - equal

"<=" or"LE" - less orequal

"<" or"LT" -lessthan

MATCHES matches regular expression
The"IN" relation will check for a value range starting at
valuel and including up to value2.

If item specifies a search iteme)ation must be= or EQ

Any string or numeric expression. See DBFIND for how to
specify (index) item lookup values.

Optional expression evaluated for each group of records in the
thread. If the expression evaluates non-zero, the records are
transfered into a workfile. See FIND statement for detalils.

regular expressiorSee next page.

Using a FIND statement, the first data set in THREAD will be read in sequential
order. This may take a long time, depending on the number of entries in the
dataset. QFIND allows quick access using either index items or search items.

34

Sort Statements and Functions
The QFIND statement

QFIND will always add pointers to the workfile but not process pointers already
in the workfile, which means it is possible to add the pointers of multiple subsets
into a workfile using QFIND.

Specifying the conditional expression results in the same workfile as using a
QFIND/FIND sequence but reduces overhead.

Here you will find some sample sequences using QFIND.

QFIND "ORDER-NO","=","1234" QFIND "TEST", ">=",15 QFIND
"ACCOUNT","IN",10000,12000;Account_type=15 QFIND "CUS-
MC","MATCHES","M[a-f]*"

Regular Expressions

Elements:

[starting delimiter of character class expression

[ending delimiter of character class expression

! negation expression (only as 1st character of character class)
- range expression (only inside a character class)

? any character

* any string (including the empty string)

numeric character (same as [0-9])

The backslash character (\) loses its special meaning within the
delimiters, except in the following combinations:

\b - becomeshackspace
\t - becomestab
\r - becomescr
\n - becomedf
\f - becomesff
\s - becomesspace
The above combinations conform to the HP-UX standard, and are
extremely practical.
Evaluation

An evaluation is only possible with index items, and then only for leading string
segments. Index items without leading string segments cannot be accessed.

35

Sort Statements and Functions
The QFIND statement

A regular expression must exactly describe the contents of the leading string seg-
ments. There is no implicit "*" at the end (as in DBFIND 2/3). For example, the
value "AAA "(trailing space) does not match the search expression "AAA".

Examples of regular expressions:
A[BCD] Index value starts with A, followed by either a B, C or D.

BOB?* Index value starts with BOB, followed by at least one character.

36

Sort Statements and Functions
The WFLEN Function

The WFLEN Function

The WFLEN function returns the number of logical record pointers contained in
the specified workfile.

WFLENfile numbey
The parameter is:

file number A numeric expression specifying the file number of the work-
file.

WFLEN returns a value from 0 througP!2lf a FIND, QFIND or SORT BY has

not been executed on the workfile, O is returned. 0 also indicates no entries in the
workfile. -1 is returned when the contents of the workfiles are invalid (caused by
pressingHALT ALL or CTRL Y or getting a disk error during a SORT BY or

FIND statement). Executing WFLEN on a file other than a workfile causes an
error.

37

Sort Statements and Functions
The READ # and PRINT # Statements

The READ # and PRINT # Statements

The READ # and PRINT # statements operate on workfiles in much the same way
as they operate on DATA files. Although their syntax is identical, certain restric-
tions apply when operating on workfiles.

The first restriction is that only an integral number of logical records can be read
or written. If a partial logical record is read, an error is issued and the record
pointer is left at word one of the incompletely read record. If a partial logical
record is written, the incompletely written record is not changed; instead, the
record pointer at the beginning of that record and an error is issued. Strings cannot
be read or written on workfiles. Arrays can be written or read by using the array
notation (i.e. A(*), or via MAT PRINT # and MAT READ #.

Note that a pointer value is a value between 1 and the capacity of the set to which
it pertains.

If a non-integral value is PRINTed on a workfile, it is rounded to an integer. If the
rounded value is less than 1 or greater than the set capacity, an error occurs.

The record pointer for READ # and PRINT # can be positioned at any record from
1 through WFLEN + 1. Attempting to position past record number WFLEN + 1
results in an end-of-file error (which is trappable by ON END #). When printing to
records greater than WFLEN, the value of WFLEN is adjusted appropriately.
However, actually trying to read values in records beyond WFLEN causes end-of-
file error.

PRINTing an END on a workfile resets WFLEN to a value corresponding to the
record where END was printed -1. This effectively erases all information from the
record where END was printed to the end of the workfile.

Other Statements and Functions

Certain statements and functions behave differently when applied to workfiles.
Briefly, these are:

TYP Returns 0 since the data stored in a workfile is not a standard
data type. (Each pointer may have a value from 1 throtfgh 2
and takes 4 bytes of storage.)

WRD Always returns 1. Since only complete logical records can be
read from or written to a workfile, the word pointer of the file
will always be the first word of the record.

38

Sort Statements and Functions
The READ # and PRINT # Statements

REC Works the same as DATA files. The value returned will be
between 1 and WFLEN + 1. If no pointers are put into the
workfile, however, 0 is returned.

SIZE Returns file size in sectors for a positive argument, and thread
length for a negative argument.

RESET # Erases the workfile. Result is same as WORKFILE IS #;
THREAD.

39

Sort Statements and Functions
SORT Order of Execution

SORT Order of Execution

SORT statement execution is strongly interrelated to DBMS and Eloquence file
storage operations (see the previous section). In order to execute a statement, all
statements which have pointers into the statement to be executed must have previ-
ously been executed (e.g., to execute a FIND, a WORKFILE IS # and at least one
IN DATA SET must have been previously executed).

40

Program Examples

This chapter shows several programs using SORT operations with the Sales Anal-
ysis Data base (SAD). The two programs introduced in Chapter 1 are described
here: a program to list products along with their associated orders and a program
which also lists the options for each order. Whenever possible, the line numbering
for logically-equivalent statements remains the same for each program.

41

Program Examples
Order List Programs

Order List Programs

Each of the order list programs produces a report as shown on page 3-2. This
report lists the orders in the data base, broken down by product and sorted accord-
ing to order number. The products themselves are listed in sorted order. Also,
totals are maintained for all orders on each product as well as a total of all orders.

Example program 1 uses a two-set thread (see line 1320). This means that two
pointers must be read in line 1480. The R1 pointer refers to a record in the
PRODUCT set and the R2 pointer refers to a record in the CUSTOMER set.

Every time the product changes, the value of R1 also changes. S1 represents the
value of R1 at the previous pass through the FOR loop. It is used to detect when it
is necessary to print a trailer for the current product (consisting primarily of the
total of the orders for the product) and a heading for the new product. Note how-
ever, that printing a trailer at the first pass through the loop is undesirable. A spe-
cial test for S1=0 is made to stop this from occurring.

Note that the sort performed in line 1360 has Prod_no as its primary sort field.
This variable comes from the PRODUCT data set (see line 1190). Because the
schema item "PRODUCT-NQ" is a search item, however, the value of the variable
Product_no%rom the CUSTOMER detail set could just as well have been used.

This program shows many poor programming practices which are corrected by
example program 2:

« The status array is never tested at any point in the program. The data base may not have
been opened; this will ultimately result in error 211 being issued in line 1180.

« As pointed out earlier, the PRODUCT data set need not be involved in the sort. As dis-
cussed in Chapter 4, having the PRODUCT data set in the thread greatly reduces effi-
ciency of the SORT BY statement. The description field, however, must be accessed to
get the description field for printing. (This is done by a calculated-access DBGET in
line 1690 of example program 2.)

« After deleting PRODUCT from the thread there is only one pointer per record in the
workfile (see line 1480). This points into the CUSTOMER set, so there is no way to
wait for change in record number to indicate a change in product. Thus, the actual prod-
uct numbers mut be compared. Note that the update of the old product number is ac-
complished by the IN DATA SET which is triggered when the DBGET in line 1690 is
executed. This means that a line analogous to line 1710 in the first example is not need-
ed.

42

Order List Report

Program Examples
Order List Programs

OUTSTANDING ORDERS LIST

PRODUCT ORDERNUMBER

50 (Tricycle)
110 Gissing, Malcom

TOTAL ORDERS FOR 50

100 (Standard Bicycle)
101 Noname, Joseph

103 Hernandes, Jose
108 Arauja, Luciano A.
TOTALORDERSFOR100

300 (3-Speed Bicycle)
104 Houseman, Sean

TOTAL ORDERS FOR 300

500 (5-Speed Bicycle)
100 Smith, Thomas A.

105 Sono, Jomo A.
109 Bekker, Bart
TOTALORDERSFOR500

1000 (10-Speed Bicycle)

102 Johnson, Sam
Heining, Heinz
Dalling, Jimmy

106
107

TOTAL ORDERS FOR 1000

TOTAL ORDERS

CUSTOMER NAME

PRICE

45,00

45,00

77,50
109,75
80,00

267,25

133,00

175,50
135,00
125,00

435,50

162,50

Example Program 1: A Two-set Thread

OUTSTANDING ORDERS REPORT (NOT INCLUDING ALL DETAIL)

! OPEN DATA BASE

1000 !

1010 !

1020 !

1030 INTEGER S(9), Prod_no

1040 DIM B$[12],P$[10],Buf$[170]

1050 DIM Desc$[30],0rder_no$[30],Name$[30]
1060 DISP “~~" I CLEAR SCREEN
1090 B$=" SAD, SALES”

1100 P$="MANAGER”

1110 DBOPEN (B$,P$,1,S(*))

1150 !

1160 ! SET UP ALL APPROPRIATE RELATIONSHIPS
1170 !

1180 DBASE IS B$

43

Program Examples
Order List Programs

1190 IN DATA SET “PRODUCT” USE Prod_no,Desc$

1200 IN DATA SET “CUSTOMER” USE ALL

1220 !

1230 ! SET UP THE WORKEFILE

1240 !

1310 ASSIGN “XYZ" TO #1

1320 WORKFILE IS #1; THREAD IS “PRODUCT”,"CUSTOMER”

1330 !

1340 ! SORT THE STRUCTURE
1350 !

1360 SORT BY Prod_no,Order_no$
1400 !

1410 ! INITIALIZE VARIABLES & PRINT REPORT HEADER

1420 !

1430 Rep:Total=Master_total=0

1440 S1=0

1450 PRINT TAB(20);"OUTSTANDING ORDERS LIST";LIN(1)

1460 PRINT “PRODUCT";SPA(8);"ORDER NUMBER”";SPA(4);"CUSTOMER
NAME";SPA(14);"PRICE”";LIN(1);RPT$("-",63);LIN(1)

1461 !

1462 ! PRODUCE THE REPORT

1463 !

1470 FOR Z=1 TO WFLEN(1)

1480 READ #1;R1,R2

1570 !

1580 ! PRINT TRAILER FOR PRODUCT (IF NEEDED)
1590 !

1600 ! (SKIPIF SAME PRODUCTASBEFORE, ORFIRST TIME THRU LOOP)
1610 !

1620 IF (R1=S1) OR NOT S1 THEN Notot

1630 PRINT USING Tot_image;VAL$(Prod_no),Total
1640 Total=0

1650 !

1660 ! PRINT HEADER FOR PRODUCT (IF NEEDED)
1670 !

1680 Notot:IF R1=S1 THEN Skip1

1690 DBGET (B$,"PRODUCT" 4,S(*),"@",Buf$,R1)
1710 S1=R1

1720 PRINT VAL$(Prod_no);” (";TRIM$(Desc$);")”
1810 !

1820 ! PRINT ORDERS

1830 !

1840 Skip1:DBGET (B$,"CUSTOMER”,4,S(*),"@",Buf$,R2)

1860 PRINT TAB(16);

1870 PRINT USING Itm_image;Order_no$,Name$,Price

1880 Itm_image:IMAGE 16A,22A,2X,5DRDD

1890 !

1900 ' ACCUMULATE TOTALS

1910 !

1920 Total=Total+Price

1940 Master_total=Master_total+Price

1950 NEXT Z

1960 !

1970 ! PRINT FINAL TOTALS

1980 !

2000 PRINT USING Tot_image;VAL$(Prod_no), Total

2010 PRINT USING Mstr_image;Master_total

2040 Tot_image:IMAGE 54X,9("=") / 3X,
"TOTAL ORDERS FOR “,10A,24X,6DRDD /

2050 Mstr_image:IMAGE // 25X,"TOTAL ORDERS",14X,
"$"8DRDD / 54X,9("=")

44

2130

Program Examples
Order List Programs

END

Example Program 2: Using Only One Set Instead of Two

1000
1010
1020
1030
1040
1050
1060
1090
1100
1110
1120
1150
1160
1170
1180
1190
1200
1220
1230
1240
1310
1320
1330
1340
1350
1360
1400
1410
1420
1430
1440
1450
1460

1461 !

1462

! OUTSTANDING ORDERS REPORT (NOT INCLUDING ALL DETAIL)
!

INTEGER S(9),Product_no,Prod_no
DIM B$[12],P$[10],Buf$[170]
DIM Desc$[30],0rder_no$[30],Name$[30]

DISP “~~" I CLEAR SCREEN
B$=" SAD,SALES’

P$="MANAGER”

DBOPEN (B$,P$,1,S(*)) ! OPEN DATA BASE

IF S(0) THEN Dberr

| SET UP ALL APPROPRIATE RELATIONSHIPS
DBASE IS B$
IN DATA SET “PRODUCT” USE Prod_no,Desc$
IN DATA SET “CUSTOMER” USE ALL

| SET UP THE WORKFILE

ASSIGN “XYZ" TO #1
WORKEFILE IS #1; THREAD IS “CUSTOMER”

I SORT THE STRUCTURE

SORT BY Product_no,Order_no$
I INITIALIZE VARIABLES & PRINT REPORT HEADER
i?ep:TotaI:Master_totaI:O

Prod_no=-1

PRINT TAB(20);"OUTSTANDING ORDERS LIST";LIN(1)

PRINT “PRODUCT";SPA(8);"ORDER NUMBER”;SPA(4);"CUSTOMER
NAME";SPA(14);"PRICE";LIN(1);RPT$("-",63);LIN(1)
|

! PRODUCE THE REPORT

1463 !

1470
1480
1490
1500
1570
1580
1590
1600'!

1610 !

1620
1630
1640
1650
1660
1670
1680
1690
1700

FOR Z=1 TO WFLEN(1)
READ #1;R1
DBGET (B$,"CUSTOMER”,4,S(*),"@",Buf$,R1)
IF S(0) THEN Dberr
|

| PRINT TRAILER FOR PRODUCT (IF NEEDED)
!

'(SKIP IF SAME PRODUCT AS BEFORE, ORFIRST TIME THRU LOOP)
!

IF (Prod_no=Product_no) OR (Prod_no%-<0) THEN Notot
PRINT USING Tot_image;VAL$(Product_no),Total
Total=0

!

I PRINT HEADER FOR PRODUCT (IF NEEDED)

!

Notot:IF Prod_no=Product_no THEN Skip1l
DBGET (B$,"PRODUCT",7,S(*),"@",Buf$,Product_no)
IF S(0) THEN Dberr

45

Program Examples
Order List Programs

1720 PRINT VAL$(Prod_no);” (; TRIM$(Desc$);")"
1810 !

1820 | PRINT ORDERS

1830 !

1860 Skip1:PRINT TAB(16);

1870 PRINT USING Itm_image;Order_no$,Name$,Price

1880 Itm_image:IMAGE 16A,22A,2X,5DRDD

1890 !

1900 ' ACCUMULATE TOTALS

1910 !

1920 Total=Total+Price

1940 Master_total=Master_total+Price

1950 NEXT Z

1960 !

1970 ! PRINT FINAL TOTALS

1980 !

2000 PRINT USING Tot_image;VAL$(Prod_no),Total

2010 PRINT USING Mstr_image;Master_total

2040 Tot_image:IMAGE 54X,9("=") / 3X,
"TOTAL ORDERS FOR “,10A,24X,6DRDD /

2050 Mstr_image:IMAGE // 25X,"TOTAL ORDERS”,14X,
"$"8DRDD / 54X,9("="

2060 STOP

2070 !

2080 | ERROR TERMINATION ROUTINE

2090 !

2100 Dberr:DISP LIN(2);"STATUS ERROR “VAL$(S(0));
"IN LINE *;S(6)

2170 END

46

Program Examples
Itemized Order List Programs

Itemized Order List Programs

The remaining three programs are all extensions to the previous programs, in that
the report is essentially the same, but each order has its option listed along with it.
In example programs 3 and 4 the options are listed in sorted order. A report that
could be printed by these programs is shown on page 3-7/8. Example program 5
lists the options in the order they occur along the chain in the OPTION detail. The
report produced this program is shown on pages 3-14/15.

Note that there is a blank option following the customer name. There is actually
an entry with a blank option number field in ORDER for each order placed. This
record contains the price of the product, and the all-blank field is used to force this
entry to occur before any of the options to guarantee that it will be the first in the
chain.

The blank entry also serves another function. If it were not included, then any
order sold with no options would have no record in the OPTION set. This would
generate an incomplete hierarchy for such orders, so they would not occur in the
workfile generated by programs 3 and 4, though program 5 could be modified to
handle such orders.

Example program 3 uses a four-set thread (see line 1320). The construction of this
thread is discussed in Chapter 1. Note, that although four pointers must be read
from the workfile (see line 1480), the third pointer, R3, is never used. This third
pointer is just the place holder to skip over the information in the automatic set,
ORDER. Again, the change in record number pertaining to the PRODUCT set is
used to trigger the headers and trailers for new products (via variables R1 and S1).
A similar technique is used to detect the change in order number (via variables R2
and S2).

Example program 3 is another case of bad programming. Example program 4
cleans up these problems. It adds status checks for data base calls, error trapping
(see line 1070) andALT key trapping (see line 1080). Also, all the previous
examples have assumed that the data file “XYZ:” exists for use as a workfile.
Example program 4 now checks to see if the workfile exists and creates it if it
does not. It stops if the file is protected or is of the wrong type.

For reasons detailed in Chapter 4, long threads are undesirable and should be
avoided when possible. As in example program 2, the PRODUCT set can be elim-
inated from the thread by use of a calculated-access DBGET. This reduces the
thread length to three. Also, if it is not particularly important to have the options
listed in sorted order, a DBFIND on the OPTION set using the order number from

47

Program Examples
[temized Order List Programs

the CUSTOMER set may be done. This allows chained mode DBGETSs to be used
to get the options. Listing will thus be in the chain order (the order the options
appeared in on the original order). This reduces the thread length to only one set,
the CUSTOMER set. Program example 5 shows how this could be done.

In example program 5, as in example 2, the actual product number is used to
determine when headers and trailers are required. However, since each record in
the workfile corresponds to a new order, no special logic is needed to detect
change in order number; The header and trailer each occur every time through the
loop. A special imbedded FOR loop is added, however, to print out the options
(see lines 1835 through 1945).

Itemized Options List Report (sorted order)

OUTSTANDING ORDERS LIST
PRODUCT ORDERNUMBER CUSTOMER NAME PRICE

50 (Tricycle)

110 Gissing, Malcom 45,00
45,00
TOTAL ORDERS FOR 50 45,00
100 (Standard Bicycle)
101 Noname, Joseph 75,00
Horn 2,50
77,50
103 Hernandes, Jose 75,00
Fan 10,00
Horn 10,00
Light 5,00
Mud Flaps 7,25
Stripes 2,50
109,75
108 Arauja, Luciano A. 75,00
Horn 5,00
80,00
TOTAL ORDERS FOR 100 267,25
300 (3-Speed Bicycle)
104 Houseman, Sean 110,00
Light 5,00
Super Tire18,00
133,00
TOTAL ORDERS FOR 300 133,00

48

Program Examples
Itemized Order List Programs

500 (5-Speed Bicycle)
100 Smith, Thomas A. 125,00
Basketle 45,00

Light 5,00
175,50
105 Sono, Jomo A. 125,00
Horn 2,50
Reflector 7,50
135,00
109 Bekker, Bart 125,00
""" 125,00
TOTALORDERSFOR500 435,50

1000 (10-Speed Bicycle)
102 Johnson, Sam 150,00
Chrome 12,50

162,50
106 Heining, Heinz 150,00
Basket 15,00
Light 10,00
175,00
107 Dalling, Jimmy 150,00
150,00
TOTAL ORDERS FOR1000 487,50
TOTAL ORDERS $1368,25

Example Program 3: A Four-set Thread

1000 !

1010 ! OUTSTANDING ORDERS REPORT (INCLUDING ALL DETAIL)
1020 !

1030 INTEGER S(9),Prod_no

1040 DIM B$[12],P$[10],Buf$[170]

1050 DIM Desc$[30],0rder_no$[30],Name$[30],Option_desc$[10]
1060 DISP “ * I CLEAR SCREEN

1090 B$=" SAD,SALES”

1100 P$="MANAGER”"

1110 DBOPEN (B$,P$,1,S(*)) ! OPEN DATA BASE
1120 IF S(0) THEN Dberr

1150 !

1160 | SET UP ALL APPROPRIATE RELATIONSHIPS
1170 !

1180 DBASE IS B$
1190 IN DATA SET “PRODUCT” USE Prod_no,Desc$

49

Program Examples
[temized Order List Programs

1200 IN DATA SET “CUSTOMER” USE ALL

1210 IN DATA SET “OPTION” USE SKP 1,0ption_desc$,PO

1220 !

1230 ! SET UP THE WORKEFILE

1240 !

1310 ASSIGN “XYZ" TO #1

1320 WORKFILE IS #1;THREAD IS “PRODUCT”,"CUSTOMER”,
"ORDER”,”"OPTION”"

1330 !

1340 ! SORT THE STRUCTURE

1350 !

1360 SORT BY Prod_no,Order_no$,0Option_desc$
1400 !

1410 ! INITIALIZE VARIABLES & PRINT REPORT HEADER

1420 !

1430 Rep:Sub_total=Total=Master_total=0

1440 S1=S2=0

1450 PRINT TAB(30);"OUTSTANDING ORDERS LIST";LIN(1)

1460 PRINT “PRODUCT”;SPA(8);"ORDER NUMBER";SPA(10);"CUSTOMER
NAME”";SPA(9);"OPTIONS”;SPA(8);"PRICE";LIN(1);
RPT$("-",79);LIN(1)

1461 !

1462 ! PRODUCE THE REPORT

1463 !

1470 FOR Z=1 TO WFLEN(1)

1480 READ #1;R1,R2,R3,R4

1490 !

1500 ! PRINT TRAILER FOR ORDER (IF NEEDED)

1510 !

1520 ! (SKIPIF SAME ORDER AS BEFORE, OR FIRST TIME THRU LOOP)

1530 !

1540 IF (R2=S2) OR NOT S2 THEN Nosub

1550 PRINT USING Sub_image;Sub_total

1560 Sub_total=0

1570 !

1580 ! PRINT TRAIILER FOR PRODUCT (IF NEEDED)
1590 !
1600 ! (SKIPIF SAME PRODUCTASBEFORE, ORFIRST TIME THRU LOOP)
1610 !

1620 Nosub:IF (R1=S1) OR NOT S1 THEN Notot

1630 PRINT USING Tot_image;VAL$(Prod_no),Total
1640 Total=0

1650 !

1660 ! PRINT HEADER FOR PRODUCT (IF NEEDED)
1670 !

1680 Notot:IF R1=S1 THEN Skip1

1690 DBGET (B$,"PRODUCT”,4,5(*),"@",Buf$,R1)
1710 S1=R1

1720 PRINT VAL$(Prod_no);” (;TRIM$(Desc$);”)"
1730 !

1740 ! PRINT HEADER FOR ORDER (IF NEEDED)
1750 !

1760 Skipl:IF R2=S2 THEN Skip2

1770 DBGET (B$,"CUSTOMER”,4,S(*),"@",Buf$,R2)
1790 PRINT TAB(20);Order_no$;TAB(38);Name$[1,21];
1800 S2=R2

1810 !

1820 ! PRINT OPTIONS

1830 !

1840 Skip2:DBGET (B$,"OPTION",4,S(*),"@",Buf$,R4)

1860 PRINT TAB(60);

50

Program Examples
Itemized Order List Programs

1870 PRINT USING Itm_image;Option_desc$,PO

1880 Itm_image:IMAGE 10A,2X,5DRDD

1890 !

1900 ' ACCUMULATE TOTALS

1910 !

1920 Total=Total+PO

1930 Sub_total=Sub_total+PO

1940 Master_total=Master_total+PO

1950 NEXT Z

1960 !

1970 ! PRINT FINAL TOTALS

1980 !

1990 PRINT USING Sub_image;Sub_total

2000 PRINT USING Tot_image;VAL$(Prod_no), Total

2010 PRINT USING Mstr_image;Master_total

2030 Sub_image:IMAGE 71X,8("-") / 71X,5DRDD /

2040 Tot_image:IMAGE 70X,9("-") / 11X,"TOTAL ORDERS FOR “,10A,
32 X,6DRDD /

2050 Mstr_image:IMAGE // 31X,"TOTAL ORDERS”,24X,"$"8DRDD / 70X,

2160 END

Example Program 4: Using Only One Set Instead of Four

1000 !

1010 ! OUTSTANDING ORDERS REPORT (INCLUDING ALL DETAIL)

1020 !

1030 INTEGER S(9),Prod_no

1040 DIM B$[12],P$[10],Buf$[170]

1050 DIM Desc$[30],0rder_no$[30],Name[30],Option_desc$[10]

1060 DISP “ * I CLEAR SCREEN

1070 ON ERROR GOTO Error I SET UP ERROR AND HALT TRAPS

1080 ON HALT GOTO Halt

1090 B$=" SAD,SALES”

1100 P$="MANAGER”"

1110 DBOPEN (B$,P$,1,S(*)) ! OPEN DATA BASE

1120 IF S(0) THEN Dberr

1150 !

1160 ! SET UP ALL APPROPRIATE RELATIONSHIPS

1170 !

1180 DBASE IS B$

1190 IN DATA SET “PRODUCT” USE Prod_no,Desc$

1200 IN DATA SET “CUSTOMER” USE ALL

1210 IN DATA SET “OPTION” USE SKP 1, Option_desc$,PO

1220 !

1230 ! SET UP THE WORKFILE

1240 !

1250 ASSIGN “XYZ" TO #1,Z

1260 IF Z%<2 THEN Ok

1270 DISP “CAN'T ASSIGN THE WORKFILE!"

1280 STOP

1290 Ok:IFNOT Z THEN Aok |CREATE WORKFILE IFNECESSARY

1300 FCREATE “XYZ" ,0

1310 ASSIGN “XYZ" TO #1

1320 Aok:WORKFILE IS #1;THREAD IS “PRODUCT","CUSTOMER","ORDER”,
"OPTION"

1330 !

1340 ! SORT THE STRUCTURE

51

Program Examples
[temized Order List Programs

1350 !
1360 SORT BY Prod_no,Order_no$,0Option_desc$
1370 IF WFLEN(1) THEN Rep
1380 DISP*“THEREARENOENTRIESINTHESTRUCTURE TOREPORT ON.”
1390 STOP
1400 !
1410 ! INITIALIZE VARIABLES & PRINT REPORT HEADER
1420 !
1430 Rep:Sub_total=Total=Master_total=0
1440 S1=S2=0
1450 PRINT TAB(30);"OUTSTANDING ORDERS LIST";LIN(1)
1460 PRINT“PRODUCT";SPA(8);"ORDER NUMBER";SPA(10);"CUSTOMER
NAME";SPA(9);"OPTIONS";SPA(8);"PRICE";LIN(1);
RPTS$("-",79);LIN(1)
1461 !
1462 ! PRODUCE THE REPORT
1463 !
1470 FOR Z=1 TO WFLEN(1)
1480 READ #1;R1,R2,R3,R4
1490
1500 ! PRINT TRAILER FOR ORDER (IF NEEDED)
1510 !
1520! (SKIPIFSAEORDERASBEFORE,ORFIRSTTIME THRULOOP)
1530 !
1540 IF (R2=S2) OR NOT S2 THEN Nosub

1550 PRINT USING Sub_image;Sub_total

1560 Sub_total=0

1570 !

1580 ! PRINT TRAILER FOR PRODUCT (IF NEEDED)
1590 !

1600 ! .(SKIP IF SAME PRODUCT AS BEFORE,OR FIRST TIME THRU LOOP)
1610 !
1620 Nosub:IF (R1=S1) OR NOT S1 THEN Notot

1630 PRINT USING Tot_image;VAL$(Prod_no),Total
1640 Total=0

1650 !

1660 ! PRINT HEADER FOR PRODUCT (IF NEEDED)
1670 !

1680 Notot:IF R1=S1 THEN Skipl

1690 DBGET (B$,”PRODUCT",4,S(*),"@",Buf$,R1)
1700 IF S(0) THEN Dberr

1710 S1=R1

1720 PRINT VAL$(Prod_no);” (;TRIM$(Desc$);")"
1730 !

1740 ! PRINT HEADER FOR ORDER (IF NEEDED)
1750 !

1760 Skipl:IF R2=S2 THEN Skip2

1770 DBGET (B$,"CUSTOMER",4,S(*),"@",Buf$,R2)
1780 IF S(0) THEN Dberr

1790 PRINT TAB(20);0rder_desc$; TAB(38);Name$[1,21];
1800 S2=R2

1810 !

1820 ! PRINT OPTIONS

1830 !

1840 Skip2:DBGET (B$,"OPTION",4,S(*),"@",Buf$,R4)
1850 IF S(0) THEN Dberr

1860 PRINT TAB(60);

1870 PRINT USING Itm_image;Option_no$,PO
1880 Itm_image:IMAGE 10A,2X,5DRDD

1890 !

1900 !' ACCUMULATE TOTALS

52

Program Examples
Itemized Order List Programs

1910 !

1920 Total=Total+PO

1930 Sub_total=Sub_total+PO

1940 Master_total=Master_total+PO

1950 NEXT Z

1960 !

1970 ! PRINT FINAL TOTALS

1980 !

1990 PRINT USING Sub_image;Sub_total

2000 PRINT USING Tot_image;VAL$(Prod_no), Total
2010 PRINT USING Mstr_image;Master_total

2020 DISP “REPORT COMPLETE.”

2030 Sub_image:IMAGE 71X,8("-") / 71X,5DRDD /
2040 Tot_image:IMAGE 70X,9("=") / 11X,"TOTAL ORDERS FOR “,10A,

32 X,6DRDD /

2050 Mstr_image:IMAGE // 31X,"TOTAL ORDERS’,24X,"$"8DRDD /
70X,9(=")

2060 STOP

2070 !

2080 | ERROR AND HALT TERMINATION ROUTINES

2090 !

2100 Dberr:DISP LIN(2);"STATUS ERROR “;VAL(S(0));” IN LINE”;S(6)
2110 STOP

2120 Error:DISP LIN(2);"UNEXPECTED “;ERRM$

2130 STOP

2140 Halt:PRINT LIN(2)

2150 DISP LIN(2);"PROGRAM TERMINATED.”

2160 END

Itemized Options List Report (unsorted order)

OUTSTANDING ORDERS LIST
PRODUCT ORDERNUMBER CUSTOMER NAME PRICE
50 (Tricycle)
110

Gissing, Malcom 45,00
45,00
TOTAL ORDERS FOR 50 45,00
100 (Standard Bicycle)
101 Noname, Joseph 75,00
Horn 2,50
77,50
103 Hernandes, Jose 75,00
Light 5,00
Mud Flaps 7,25
Horn 10,00
Stripes 2,50
Fan 10,00
109,75
108 Arauja, Luciano A. 75,00
Horn 5,00

53

Program Examples
[temized Order List Programs

80,00
TOTALORDERSFOR100 267,25
300 (3-Speed Bicycle)
104 Houseman, Sean 110,00
SuperTire 18,00
Light 5,00
133,00
TOTALORDERSFOR300 133,00

500 (5-Speed Bicycle)
100 Smith, Thomas A. 125,00
Light 5,00
Basketle 45,50

175,50
105 Sono, Jomo A. 125,00
Horn 2,50
Reflector 7,50
135,00
109 Bekker, Bart 125,00
125,00
TOTALORDERSFOR500 435,50

1000 (10-Speed Bicycle)
102 Johnson, Sam 150,00
Chrome 12,50

162,50
106 Heining, Heinz 150,00
Light 10,00
Basket 15,00
175,00
107 Dalling, Jimmy 150,00
150,00
TOTALORDERSFOR1000 487,50
TOTAL ORDERS $1368,25

Example 5: Listing Options in Unsorted Order

1000 !
1010 ! OUTSTANDING ORDERS REPORT (INCLUDING ALL DETAIL)
1020 !

54

1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1150 !
1160 !
1170 !
1180
1190
1200
1210
1220 !
1230 !
1240 !
1250
1260
1270
1280

Program Examples
Itemized Order List Programs

INTEGER S(9),Product_no,Prod_no

DIM B$[12],P$[10],Buf$[170]

DIM Desc$[30],0rder_no$[30],Name$[30],Option_desc$[10]
DISP “ I CLEAR SCREEN

ON ERROR GOTO Error ISET UP ERROR AND HALT TRAPS

ON HALT GOTO Halt

B$=" SAD,SALES"

P$="MANAGER”

DBOPEN (B$,P$,1,5(*)) ! OPEN DATA BASE
IF S(0) THEN Dberr

SET UP ALL APPROPRIATE RELATIONSHIPS

DBASE IS B$

IN DATA SET “PRODUCT” USE Prod_no,Desc$

IN DATA SET “CUSTOMER” USE ALL

IN DATA SET “OPTION” USE SKIP 1,0ption_desc$,PO

SET UP THE WORKFILE

ASSIGN “XYZ" TO #1,Z

IF Z%<2 THEN Ok

DISP “CAN'T ASSIGN THE WORKFILE!"
STOP

1290 Ok: IFNOTZTHENAok !CREATEWORKFILEIFNECESSARY

1300
1310

FCREATE “XYZ",0
ASSIGN “XYZ" TO #1

1320 Aok:WORKFILE IS #1;THREAD IS “CUSTOMER”
!

1330 !
1340 !
1350 !
1360
1370

SORT THE STRUCTURE

SORT BY Product_no,Order_no$
IF WFLEN(1) THEN Rep

1380 DISP“THEREARENOENTRIESINTHESTRUCTURE TOREPORT ON.”

1390

1400 !
1410 !
1420 !

STOP
INITIALIZE VARIABLES & PRINT REPORT HEADER

1430 Rep:TotaI:Master_totaI:O

1440
1450
1460

NAME”

Prod_no=-1

PRINT TAB(30);"OUTSTANDING ORDERS LIST”;LIN(1)
PRINT “PRODUCT";SPA(8);"ORDER NUMBER”;SPA(10);"CUSTOMER
;SPA(9);"OPTIONS”;SPA(8);"PRICE”;LIN(1);

RPTS$("-",79);LIN(1)
|

1461 !
1462 |
1463 |
1470
1480
1490
1500
1520 !

LOOP)
1530 !
1570 !
1580 !

1590 !
1600 !

LOOP)
1610 !

PRODUCE THE REPORT

FOR Z=1 TO WFLEN(1)
READ #1;R1
DBGET (B$,"CUSTOMER” 4,S(*),"@”,Buf$,R1)
IF S(0) THEN Dberr
(SKIP IF SAME ORDER AS BEFORE, OR FIRST TIME THRU

PRINT TRAILER FOR PRODUCT (IF NEEDED)
(SKIP IF SAME PRODUCT AS BEFORE, OR FIRST TIME THRU

1620 Nosub:IF (Prod_no=Product_no) OR (Prod_no%<0) THEN Notot

55

Program Examples
[temized Order List Programs

1630 PRINT USING Tot_image;VAL$(Prod_no),Total
1640 Total=0

1650 !

1660 ! PRINT HEADER FOR PRODUCT (IF NEEDED)
1670 !

1680 Notot:IF Prod_no=Product_no THEN Skipl

1690 DBGET (B$,"PRODUCT”,7,S(*),"@",Buf$,Product_no)
1700 IF S(0) THEN Dberr

1720 PRINT VAL$(Prod_no);” (;TRIM$(Desc$);")"
1730 !

1740 ' PRINT HEADER FOR ORDER

1750 !

1790 Skip1:PRINT TAB(20);Order_no$;TAB(38);Name$[1,21];
1810 !
1820 | PRINT OPTIONS

1830 !

1835 DBFIND (B$,”OPTION",1,S(*),"ORDER-NO" Order_no$)
1836 IF S(0) THEN Dberr

1840 FOR C=1TO S(5)

1845 DBGET (B$,"OPTION",5,S(*),"@",Buf$,0)
1850 IF S(0) THEN Dberr

1860 PRINT TAB(60);

1870 PRINT USING Itm_image;Option_desc$,PO
1880 Itm_image:IMAGE 10A,2X,5DRDD

1890 !

1900 ' ACCUMULATE TOTALS

1910 !

1920 Total=Total+PO

1930 Sub_total=Sub_total+PO

1940 Master_total=Master_total+PO

1945 NEXT C

1946 PRINT USING Sub_image;Sub_total

1947 Sub_total=0

1950 NEXT Z

1960 !

1970 ! PRINT FINAL TOTALS

1980 !

2000 PRINT USING Tot_image;VAL$(Prod_no), Total

2010 PRINT USING Mstr_image;Master_total

2020 DISP “REPORT COMPLETE.”

2030 Sub_image:IMAGE 71X,8("-") / 71X,5DRDD /

2040 Tot_image:IMAGE 70X,9("=") / 11X,"TOTAL ORDERS FOR “,10A,
32X,6DRDD /

2050 Mstr_image:IMAGE // 31X,"TOTAL ORDERS",24X,
"$"8DRDD / 70X,9("=")

2060 STOP

2070 !

2080 ! ERROR AND HALT TERMINATION ROUTINES

2090 !

2100 Dberr:DISP LIN(2);"STATUS ERROR “;VAL$(S(0));” IN LINE”;S(6)

2110 STOP

2120 Error:DISP LIN(2);"UNEXPECTED “;ERRM$

2130 STOP

2140 Halt:PRINT LIN(2)

2150 DISP LIN(2);"PROGRAM TERMINATED.”

2160 END

56

Programming Considerations

57

Programming Considerations
Introduction

Introduction

A great deal can be done toward speeding up SORT operations by following cer-
tain programming guidelines. This chapter presents factors which should be con-
sidered in program and data base design to optimize sorting speed. Use of some
factors will always result in optimum sort speed. Use of other factors may
increase or decrease speed, depending on how they are implemented; trial and
error will determine the optimum combination for a given application.

58

Programming Considerations
Software Optimization

Software Optimization

The most significant gains in terms of speed improvement can be made by follow-
ing some simple rules in designing programs using SORT operations. There are
essentially three classes of rules which will be covered:

* Generally true rules.

* Rules which are to be used if no FINDs, QFINDS, SORTSs or PRINT #s have been done
on the workfile (REC=0).

* Rules which are to be used if pointers have been put in the workfile (REC \\neq0).

General Rules

The most important rule is to keep thread length minimal. Also, if either the first
or the last set in the thread is a master and the only item that will ever used out of
it for FINDing, QFINDing or SORTing is the search item, it can be eliminated.
This is possible since that item also exists in the associated detail thus enabling a
calculated access DBGET to be used to get the additional information out of the
master.

Turn offall possible IN DATA SETs (via the FREE option) before doing a FIND

or QFIND. If a particular IN DATA SET is active for some data set in the thread

and no values from that set are needed to evaluate the selection expression, FREE-
ing that IN DATA SET stops FIND/QFIND from reading information from that

set.

Rules When REC =0

When there are no pointers in the workfile, SORT BY and FIND statements must
do a serial read of the first set in the thread. If you need only a few entries from a
large data set, use QFIND to locate requested entries before executing FIND or
SORT BY.

Specifying the conditional expression in a QFIND statement reduces overhead
against QFIND/FIND sequence, because records are only processed once.

QFIND works by appending, i.e. adding entries. This is particularly useful if data
conditions are diferent.

59

Programming Considerations
Software Optimization

If an item occurs in more than one set in the thread (normally because it is a
search item), it should be selected to come from the set closest to the start of the
thread. For FIND it is very important to notice all appropriate sets (ones with IN
DATA SETs active) have been read. Thus, if the needed set can be restricted to
those near the head of the thread, the expression can be evaluated sooner.

If the FIND condition is a series of conditions separated by ANDs, it may be ben-
eficial to break them up into separate FINDs. In general, if some of the clauses
pertain only to the first set in the thread and they will select significantly less than
all the data available, then it is best to construct two FIND statements (the first
one pertaining only to the set at the head of the thread). Remember when doing
this to deactivate and reactivate the IN DATA SET relations (via FREE) to maxi-
mize effect.

Rules When REC# 0

Here again it is a good idea to deactivate all unused IN DATA SET relations per-
taining to sets in the thread. In the case of SORT BY, the fewer sets involved the
better. Remember that if one of the sort items is a search item it may be possible to
select it from one to several sets. Select it from the set which allows you to deacti-
vate the most IN DATA SETSs.

In the case of FIND the same things as mentioned for SORT BY also apply. How-
ever, breaking up a complex FIND separated by ANDs into several FINDs may
increase speed if (and only if) some of the clauses separated by the ANDs do not
involve the same sets or involve fewer sets than the other clauses. If this is the
case, the clauses which have the fewest sets involved and the lowest probability of
being true should be executed first. Remember, again, that the only way FIND
knows which sets are involved is by which IN DATA SETs are active. Clearly,

most of these rules assume the programmer has a good understanding of the form
the data will take (in terms of probable events). When in doubt, perform tests.

60

Programming Considerations
Software Optimization

Table 2 Overview
REC =0 REC# 0
(no previous QFIND, FIND, SORT BY | (previous FIND, SORT BY or
or PRINT) PRINT #)
FIND Keep thread lenght short. Make sure IN DATA SET are active
Make sure the last set with an on only those sets from which
IN DATA SET active on it is as close to| information must be retrieved
the start of the thread as possible
SORT BY | Keep thread lenght short. Make sure sort keys come fron] as
few sets as possible.
ALWAYS:

1) Minimize thread length.
2) Minimize complexity of the FIND selection expression.
3) Minimize total sort key.

61

Programming Considerations
Software Optimization

62

Schema Listing for the SAD Data Base

63

Schema Listing for the SAD Data Base

$CONTROL LIST, TABLE, ROOT
$TITLE “Sales Analysis Data Base”

BEGIN DATA BASE SAD; <<CUSTOMER SALES ANALYSIS DATA BASE>>

PASSWORDS: <<Password definition>>
10 SALESMAN;
15 MANAGER;
3 SECRTARY; <<WILLHAVE READ ACCESS ONLY>>

ITEMS <<Item definition>>

ADDRESS, 2 X30;
<<2 LINES OF ADDRESS ALLOWED>>
CITY, X16;
COUNTRY, X12;
<<PATH FOR ORDER-DATE, SHIP-DATE>>
DATE, l;
NAME, X30;
OPTION-DESC, X10;
OPTION-PRICE, L;

OPTION-TYPE, l;
ORDER-DATE, I; <<MUST BE YYMM>>
ORDER-NO, X10;
PRICE, L;
PRODUCT-NO, l;
PROD-DESC, X30;
REGION, X6;
REGION-DESC, X30;
REGION,TYPE, l;
SALESPERSON, X4,
SHIP-DATE, I; <<MUST BE YYMM>>
STATE, X6;
ZIP-CODE, X8
SETS: << Set defintion >>

NAME: DATE, A (3/10,15);
ENTRY: DATE (2);
CAPACITY: 51;

NAME: ORDER, A (3/10,15);
ENTRY: ORDER-NO (2);
CAPACITY: 101,

NAME: PRODUCT, M (3,10/15);
ENTRY: PRODUCT-NO (1)

PROD-DESC; (1)
CAPACITY: 11;

NAME: LOCATION, M(3,10/15);
ENTRY: REGION (1),
REGION-DESC,
REGION-TYPE;
CAPACITY: 17;

NAME: OPTION, D (3/10,15);
ENTRY: ORDER-NO (ORDER),
OPTION-DESC,
OPTION-PRICE,
OPTION-TYPE;
CAPACITY: 300;

NAME: CUSTOMER, DETAIL (3/10,15);
ENTRY: ORDER-NO (ORDER),
NAME,

64

Schema Listing for the SAD Data Base

ADDRESS,
CITY,
STATE,
COUNTRY,
ZIP-CODE,
ORDER-DATE (DATE),
SHIP-DATE (DATE),
REGION (LOCATION),
PRODUCT-NO (PRODUCT),
PRICE,
SALESPERSON;
CAPACITY: 100;

END

65

Schema Listing for the SAD Data Base

66

Appendix B SORT Error Codes

67

Appendix B SORT Error Codes

211

212

230

231

233

234

235

236

238

No DBASE IS statement active or bad data base

specifier. Attempt to execute an IN DATA SET or WORK-
FILE IS # without previously executing a DBASE IS or the

data base that the DBASE IS was executed for has been closed.
Or bad data base specified in DBASE IS.

Specified data set not found. An improper set name
or number was specified.

Improper nesting of SORT statements. An attempt

was made to execute a SORT BY, QFIND, FIND, IN DATA
SET, DBASE IS, etc. while nested inside one of these state-
ments. This can only happen if an expression uses a multi-line
function subprogram.

Cannot reactivate workfile, or file is not a

workfile. An attempt is made to reactivate a workfile by
using the WORKFILE IS # statement with no thread list, but
the specified file is not a workfile.

No read access to specified data set. One of the
data sets in the thread is not accessible with the current pass-
word.

Missing or improper data set linkage. For WORK-
FILE #, two adjacent sets in the thread list have no path
between them, or the chain id specified does not refer to an
existing chain.

No WORKFILE IS# statement active. Attempt to exe-

cute a SORT BY or FIND when no workfile has been declared
or the workfile was closed (either by de-assigning it or by
DBCLOSE).

Improper data/index item or data/index item not

found. The item specified in the LINK parameter of WORK-
FILE IS # does not refer to an item for the specified set or the
given item in the SORT BY list is not linked via IN DATA SET

to an item in one of the sets in the thread. Improper or non-exis-
tent data/index specified in QFIND statement.

Improper synthetic linkage. The item in the LINK
parameter of WORKFILE IS # either does not match the type
of the search item in the master set following the LINK or it is
not the first sub-item. Also, LINK is applied to a master set, or
the set following the LINK is not of type master.

68

239

241

242

243

247
248
249

Appendix B SORT Error Codes

Insufficient space in workfile. Write error on work-
file.
Improper operation attempt on workfile. Attempt

to position the word pointer of a workfile to someplace other
than word 1. Also, attempt to print an array on a workfile.

Improper READ # or PRINT # on workfile. A com-
plete logical record was not read or written. The word pointer is
reset to word 1.

Workfile contains invalid information. Attempt to
access the workfile via SORT BY, QFIND, FIND, READ # or
PRINT # after its contents have been destroyed by a disk error
or CTRL Y stopping a FIND, QFIND or SORT.

Unexpected error accessing data base
Improper QFIND relation

Improper value type or improper number of value
parameter

69

Appendix B SORT Error Codes

70

Index

A
access sequence 12

C

complex database structures 18

D
data selection 16
DBASE IS statement 26

F
file storage operations 26
FIND statement 16, 26, 32

[
IN DATA SET 16
IN DATA SET statement 26

L
LINK option 29

M
multiple-level structures 18

O
order list programs 42
itemized 47

P
PRINT # statement 38

Q
QFIND statement 26, 34

R
READ # statement 38

71

S

software optimization 59
SORT 7

SORT BY statement 14, 26, 31
synthetic path 29

T
thread length 29
three-level hierarchy 20
TRIM$ 16

U
unpacking procedure 16

w

WFLEN function 37

WFLEN statement 26

workfile 12

WORKFILE IS # statement 28
WORKFILE IS# statement 26

72

