
1

Eloquence

Eloquence Language Manual

B.06.32
Edition E1202

© Copyright 2002 Marxmeier Software AG.

2

Legal Notices

Legal Notices

The information contained in this document is subject to change without notice.

MARXMEIER SOFTWARE AG MAKES NO WARRANTY OF ANY KIND
WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. Marxmeier Software AG shall not be liable for
errors contained herein or for incidental or consequential damages in connection
with the furnishing, performance or use of this material.

This document contains proprietary information which is protected by copyright.
All rights reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as
set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013. Rights for non-DOD U.S. Government
Departments and Agencies are as set forth in FAR 52.227-19 (c) (1,2).

Acknowledgments

© Copyright Marxmeier Software AG 2002. All Rights Reserved.

Marxmeier Software AG
Besenbruchstrasse 9
42285 Wuppertal
Germany

Eloquence is a trademark of Marxmeier Software AG in the US and other coun-
tries.

© Copyright Hewlett-Packard Company 1990-2002. All Rights Reserved.

This software and documentation are based in part on HP software and documen-
tation under license from Hewlett-Packard Company. HP is a trademark of
Hewlett-Packard Company.

3

Printing History

Printing History

The manual printing date indicates its current edition. The printing date will change
when a new edition is printed. Minor changes may be made at reprint without
changing the printing date. New editions are complete revisions of the manual.The
dates on the title page change only when a new edition or a new update is pub-
lished.

Manual updates may be issued between editions to correct errors or document
product changes. Manuals that are published on the Eloquence website (www.hp-
eloquence.com/doc) may be updated more often, please visit this website periodi-
cally for the most recent versions. To ensure that you receive the updated or new
editions, you should also subscribe to the appropriate product support service.

The software code printed alongside the date indicates the version level of the soft-
ware product at the time the manual or update was issued. Many product updates
and fixes do not require manual changes and, conversely, manual corrections may
be done without accompanying product changes. Therefore, do not expect a one to
one correspondence between product updates and manual updates.

Printed in the Federal Republic of Germany.

First Edition Apr 1990 A.01.00

Second Edition July 1991 A.03.00

Third Edition January 1997 A.06.00

Fourth Edition October 1997 A.06.00

Fifth Edition (E1202) December 2002 B.06.32

4

Printing History

Contents

5

Table of Contents

1 Things to Know Before You Start 13

Inside This Manual . 14

Conventions . 16

Related User Documentation 17

2 Starting Eloquence . 19

Eloquence concepts . 20

Starting the Run-Time Environment 22

3 Programming with Eloquence 25

Programming Guidelines . 27

The character oriented development environment . . . 36

The Integrated Development Environment (IDE) . . . 68

4 Data Variables and Data handling 73

Types and Forms of Variables 75

Variable Names . 77

String Variables . 78

Numeric Variables . 84

Contents

6

User defined Types . 93

Declaring and Dimensioning Variables 100

Redimensioning an Array . 106

Assigning Values to Variables 107

Eloquence keyboard handling 118

XPACK, XUNPACK statements 119

Memory Consumption . 124

5 Operators and Functions . 125

Operators and Expressions . 126

Arithmetic Operators . 127

Relational Operators . 130

Logical Operators . 132

Binary Operations . 134

Operational Hierarchy . 136

The Default ON/OFF Statements 137

Built-in Numeric Functions 138

Built-In String Functions . 143

Defining a Function . 148

Contents

7

6 Branching and Subroutines 151

Unconditional Branching . 154

Conditional Branching . 156

Looping . 158

Subroutines . 162

Branching Using Softkeys . 164

Error Testing and Recovery 167

The ON HALT Statement . 169

The KEYBD function . 170

Structured Programming . 171

7 Subprograms . 177

Parameters . 179

Multiple-Line Function Subprograms 184

Subroutine Subprograms . 187

Subprogram Considerations 189

Busy Lines . 193

8 File Storage . 195

Syntax Terms . 198

Contents

8

File Structure . 200

The Default Mass Storage Device 204

Cataloging Files (CAT) . 205

Using message Catalogs . 207

Identifying Volume Labels . 208

Storing and Retrieving Programs 209

Storaging and Retrieving Data 216

Creating a Data File . 217

Opening a Data File . 218

Serial Access . 222

Direct Access . 228

Direct Word Access . 232

Storing and Retrieving Arrays 236

Closing a File . 237

Purging a File . 238

File Storage Functions . 239

Trapping EOR and EOF Conditions 243

Data Storage Requirements . 245

Multi-User File Protection . 246

Copying a File . 247

Contents

9

Renaming a File . 248

9 Output Operations . 249

Restrictions on the Use of ASCII Control Characters 251

Selecting Output Devices . 252

Printers . 253

Audible Output (BEEP) . 257

Displayed Output (DISP) . 258

The LDISP Statement . 260

POPUP BOX . 262

The REFRESH Statement . 264

Output Functions . 265

Display Enhancements . 268

The PRINT Statement . 278

Formatted Output . 280

Spool Files . 292

Printer Control Functions . 295

10 Matrix Operations . 297

Redimensioning Arrays . 299

Contents

10

Reading and Printing Arrays 300

Assigning Values to Arrays . 303

Arithmetic Operations . 305

Array Functions . 307

Matrix Operations . 308

11 System Clock . 309

Returning the Current System Time and Date 310

Measuring Elapsed Time . 311

Programmed Delays . 312

Event Scheduling . 314

12 Multiple Task Programming 315

Primary and Secondary Tasks 316

Configuration Requirements 317

Multi-Tasking Statements . 318

Example Program Using TASK 321

Error Codes . 321

HP-UX Background Processing 322

Programming Considerations 325

Contents

11

Performance Considerations 329

Functions for Task Control . 331

13 Asynchronous Devices . 335

TIO Statements . 337

Eloquence Statements Used With TIO 341

Programming with TIO . 344

14 Integrating C Functions (DLL) 353

Using DLL in Eloquence . 355

Generating a DLL . 359

Error Messages . 370

15 Statement Flow Analyser . 371

System Reset Conditions . 384

TYP Function Return Values 385

ASSIGN Statement Return Variable 386

File Types . 387

IMAGE Formatting Symbols 388

Storage Requirements . 389

Display Enhancement Codes/Character Set Switching Codes 390

Contents

12

ASCII Character Codes . 391

Introduction . 398

Syntax List . 399

Pack Errors . 419

IMAGE Errors . 420

PREDICATE Errors . 421

SORT Errors . 422

Report Writer Errors . 423

FORMS Errors . 425

TIMER Errors . 426

TIO Errors . 427

TASK Errors . 428

User Defined Types Errors . 430

HP-UX Errors . 431

13

1

Things to Know Before You Start

14

Things to Know Before You Start
Inside This Manual

Inside This Manual

This manual contains information on using the fourth generation program devel-
opment environment Eloquence. Each chapter fully explains the features of Elo-
quence. Code examples are given to indicate the range of each command and
provide tips for programming. Most example code can be tested; the remainder
are illustrations taken from much larger programs and cannot be run alone. The
manual is organized as follows:

Chapter 1 ”Things to Know Before You Start” contains an introduction to
the use of this manual.

Chapter 2 ”Starting Eloquence” explains how to start both the develop-
ment and run-time versions of Eloquence.

Chapter 3 ”Programming Guidelines” explains operations fundamental to
the use of Eloquence (for example, developmental commands,
error messages, entering, running and debugging a program).

Chapter 4 ”Data Variables and Data handling” covers all variable-related
operations, including defining, dimensioning, and assigning
values to both numeric and string variables.

Chapter 5 ”Operators and Functions” covers all of the built-in operators,
mathematical functions, and string functions. Self-defined sin-
gle-line functions are also covered.

Chapter 6 ”Branching and Subroutines” describes conditional and uncon-
ditional branching, looping, subroutines, error trapping, and
ON HALT branching.

Chapter 7 ”Subprograms” shows how to define and access both multiple-
line function subprograms and subroutine subprograms.

Chapter 8 ”File Storage” describes Eloquence statements and functions
used to store and retrieve data and programs.

Chapter 9 ”Output Operations” covers audible, display, and printer output
operations. It also covers formatting printed output.

Chapter 10 ”Matrix Operations” describes the operations available to han-
dle arrays.

Chapter 11 ”The System Clock” describes the use of the system clock.

Chapter 12 ”Multiple Task Programming” describes the special program-

15

Things to Know Before You Start
Inside This Manual

ming considerations which exist when tasks are added to a
computer system.

Chapter 13 ”Asynchronous Devices” explains the terminal input/output
(TIO) commands available to connect asynchronous devices to
a computer system.

Appendix A ”Reference Tables” contains a number of helpful reference
tables describing, for example, system reset conditions, file
types, and ASCII character codes).

Appendix B ”Eloquence Syntax” alphabetically lists some of the statements,
functions, and commands available with the Eloquence lan-
guage.

Appendix C ”Error Messages” lists Eloquence error messages and gives a
brief explanation after each message.

Appendix D ”Statement Flow Analyser” describes methods of analysing
programs.

Glossary The glossary defines the common Eloquence terms.

Index The index contains page number references for the majority of
Eloquence features.

16

Things to Know Before You Start
Conventions

Conventions

The following conventions are used throughout this manual:

• Bold type is used when a new term is introduced.

• Computer font indicates text to be input exactly as shown or text that is output from
the system.

• Italic type is used for emphasis and titles of publications. It is also used to indicate pa-
rameters that are user defined.

• KEYCAP represents a key on the keyboard.

• represents the softkeys displayed on the computer screen.

• ... indicates that the previous variable can be repeated.

• [] indicates that information inside the brackets is optional. If there are brackets within
brackets, the information within the inner bracket may only be specified if the informa-
tion in the outer bracket is specified. Information may also be stacked in brackets. For
example, A or B or neither may be selected when the following is shown:

• { } indicates that one of the choices stacked within the braces must be selected. For ex-
ample, A or B or C must be selected when the following is shown:

NOTE: Notes contain important information and are set off from the text.

shading

A

B

A

B

C

17

Things to Know Before You Start
Related User Documentation

Related User Documentation

Additional information is included in the following manuals:

Eloquence
Installation and
Configuration
Manual This contains detailed information about the installation and

configuration on the HP-UX and NT platform.

Eloquence DBMS
Manual This contains detailed information about the database com-

mands briefly discussed in this manual.

Eloquence Forms
Manual Contains complete instructions on drawing and using form

images on the display screen.

Eloquence Report
Writer Manual Contains report descriptions and details of execution and func-

tions.

Eloquence Query
Manual Describes the software used for accessing the Eloquence data-

base.

HP-UX Operating
System ManualsThese manuals contain information on how to operate in the

HP-UX environment.

Windows NT
Manuals These manuals contain information on how to operate in the

Windows NT environment.

18

Things to Know Before You Start
Related User Documentation

19

2

Starting Eloquence

Eloquence supports the HP-UX and Windows NT platform. The runtime system
is the same on both platforms, except the character I/O, which is available on HP-
UX, only.

20

Starting Eloquence
Eloquence concepts

Eloquence concepts

Eloquence has been designed to operate in a distributed environment. It supports
you in developing and maintaining your programs in a network environment. So
again, Eloquence is keeping its promise of simple yet powerful program develop-
ment and deployment.

Major features include:

• Supports development and debugging in a distributed environment

• State-of-the-art Development Environment

• Process attachment. Debug a process running on an arbitrary machine in the
network. Even at the customer site.

How it works

Eloquence consists of several components, which can either run on a single sys-
tem or spread across a network.

The Eloquence eloqd6 server

On each machine where Eloquence shall be used, an 'eloqd6' process has to be
started. This process can be a 'master-' or a 'slave-server'. All 'slave servers' have
to notify to the 'master server', so this server is the only server in the network who
knows about all connected Eloquence systems. Which services a particular server
provides, depends on the platform and the configuration. For example, an 'eloqd6'
on a Windows 95 system can't have the same services as an 'eloqd6' on a HP-UX
system, because the database server doesn't run on the Windows 95 platform.

The Eloquence 'eloqd6' server provides a single point to access services on a par-
ticular system. On the server, it provides authorization services, remote execution
and works as a supervisor process. In addition, it provides file sharing capabilities
to the Development Environment. On client systems it implements remote execu-
tion services and communicates with the ’dlgsrv’ on the Windows platform.

The Integrated Development Environment (IDE)

The Eloquence Development Environment (IDE) is only available on the Win-
dows platform.

It provides a graphical program development environment. In order to execute
programs for debugging, it either spawns an eloqcore process locally or asks a
remote 'eloqd6-server' to start a debug process.

21

Starting Eloquence
Eloquence concepts

The Eloquence Development Environment provides its own file handling in addi-
tion to the capabilities already provided in the operating system. This file handling
is provided by the 'eloqd6' process. By providing its own file handling, Eloquence
can achieve:

• uniform and consistent file handling accross operating systems, e.g. case sensi-
tive file name handling.

• consistent and secure handling accross administrative domains. By providing
its own authentification mechanism, Eloquence programs can be transparently
executed and debugged on remote systems regardless of the platform and your
access permissions.

 The Eloquence Runtime (eloqcore)

 'eloqcore' is the part of Eloquence which executes your program. In a character
oriented environment (on UNIX) it controls the terminal and provides its own
development and debugging environment.

In a graphical oriented environment (on NT) it runs in a kind of background. For
User I/O the GUI server is used and accessed via network. The development and
debugging is done by the development server independently. So different tasks are
distributed to different servers. For more information see chapter , Starting the
Run-Time Environment.

The Dialog Server

The Dialog Server (DLGSRV) is currently only available in the Windows envi-
ronment. It provides the graphical user interface (GUI) in a networked environ-
ment. For more informationsee chapter 1, HP Eloquence Dialog System.

The Database Server

The Eloquence database server provides access to the database. All requests are
received via network, even if the eloqcore process runs on the same machine.

Since all of the Eloquence components are able to communicate over the network,
you can easily configure a system with all the components distributed to different
machines. The 'master-eloqd' server integrates the components regardless of their
real locations and provides a homogenous view of the entire system to the Devel-
opment Environment. This works even if you dial-in to a 'master-eloqd6' at the
customer site.

For more information see chapter 2, Introduction, in data base manual.

22

Starting Eloquence
Starting the Run-Time Environment

Starting the Run-Time Environment

The eloq or eloqcore command, used to start Eloquence, is executed from the
operating system prompt. Syntax is as follows:

NOTE: The eloq program is not available on the MS Windows NT platform, because multiple
tasking functions are not available, either. On a graphical user interface a second program
is started to provide the user several dialogs.

Notice that you can specify either eloq or eloqcore. eloq is an interface to eloq-
core; therefore, using eloqcore is slightly faster. The advantage that eloq has over
eloqcore is that it allows you to use the Eloquence tasking statements—
REQUEST #, ATTACH #, DETACH, and RELEASE #.

Specifying a program name along with the eloq or eloqcore command (for exam-
ple,eloq ABC) causes the program specified to be run in the Eloquence environ-
ment. Once the program has completed, control returns to the HP-UX
environment.

Executing the eloq or eloqcore command by itself simply shows the usage screen
and returns control to the HP-UX environment. The usage screen shows the syn-
tax of the command along with the options available. In other words, it shows the
basics of how to use the command. Note that this does the same thing as the -help
option.

Here is an explanation of the options associated with eloq and eloqcore:

-help Causes the usage screen to be displayed.

-r[ecord] file nameRecords every keyboard action performed by the user, and
stores it in the specified file.

-p[lay] file name Plays back the keyboard action in the specified file, previously
recorded using-r file name .

-b[ackground] Suppresses terminal output from a program. It is useful when
running a program in background. Refer to page 322 for more
information.

eloq

eloqcore

[options] [program name]

23

Starting Eloquence
Starting the Run-Time Environment

-n[otask] Only applicable for the eloq command. This option disables
Eloquence programmatic task processing. In other words, the
tasking statements REQUEST #, ATTACH #, DETACH, and
RELEASE # are disabled. Note that this option doesnot disable
HP-UX background processing.

-t[race][level] Causes a trace to be performed on the specified program. If no
program name is specified, a trace is performed on any program
run in the Eloquence environment. Levels available are 0
(default) = trace lines, 1 = trace explicit assigments, 2 = trace
all assignments. For more informationsee chapter , External
Tracing.

-taskid # Starts a specific HP-UX process as the primary task. Replace #
with the desired taskid number.

24

Starting Eloquence
Starting the Run-Time Environment

25

3

Programming with Eloquence

Eloquence provide two development environments to write, modify and degug an
application; a character oriented one, which is running on the HP-UX platform
and a graphical one, which is running on Windows NT and Windows 95. The
graphical one can communicate with the Eloquence daemon on the HP-UX plat-
form, as on the NT platform.

26

Programming with Eloquence

This chapter covers those Eloquence operations most useful to the programmer. It
is split into three parts:

• Programming guidelines, which are common to both development environments

• The character oriented development environment

• The interactive development environment (IDE).

27

Programming with Eloquence
Programming Guidelines

Programming Guidelines

Entering Programs

Be sure to check the following points before entering your first program:

• Unique line labels can be used. This optional label must be from 1 to 15 characters long
(alphanumeric and underscore allowed), begin with a capital letter, and be followed by
a colon. For example:

50 Display_name:DISP ”Name is, ”;A$

• Branching instructions can refer to the optional label. SoGOTO Display_name
would branch to the above example line.

• All numeric variables are assumed to be of real (full) precision unless specifically de-
clared as integer or short precision. The default maximum length of string variables is
18 characters. Strings with a length other than the default of 18 characters will have to
be declared in a DIM (dimension) statement. Details on declaring variable names and
sizes are in page 73 .

• The maximum program line length is 512 characters. This length includes the line num-
ber. After each line is typed in, check it carefully and then enter it into memory by
pressingRETURN. The line is automatically checked for syntax errors before it is
stored. If an error is detected, an error message appears.

• Use the exclamation point (!) comment delimiter and the REM (remark) statement to
annotate your programs. Some examples are shown later.

• An END statement should be the last line in the main program. END stops program op-
eration and resets program pointers.

NOTE: String constants and comments are limited to 255 characters. Comments cannot be
positioned beyond column 255.

The following guidelines belong to the character oriented development environ-
ment, only:

• Each program line must be preceded by a unique line number. Although line numbers
are stored in ascending order, you can enter them in any order since they are automati-
cally sorted when stored. All integer numbers from 1 through 32767 are allowed.

• Branching instructions can refer to either the line number (not recommended) or the op-
tional label. So eitherGOTO 50 orGOTO Display_name would branch to the above
example line.

• To edit a previously-stored line, just move the cursor up to the image of the line remain-
ing in the display, edit it, and store it again withRETURN. If the old line is no longer

28

Programming with Eloquence
Programming Guidelines

in the display, you can either recall it with the FETCH command or simply retype the
line number and line correctly. Then pressRETURN. This will overwrite any existing
line with the same line number.

• You also can enter your program using any HP-UX editor or utility (for example, vi or
awk). The ASCII text file you create using an editor or utility must then be syntax
checked and converted to an Eloquence program file. This is done using the store com-
mand from the HP-UX prompt. Refer to page 32 for more information on this proce-
dure.

Entering a Sample Program

Now you are ready to enter your first program. The next example shows some
useful programming tips. The program is a simple guessing game which first com-
putes an integer number between 0 and 9 and then gives the operator three
chances to guess it. This example uses the character I/O (INPUT, DISP), so it can-
not run on the NT platform.

10 REM
20 REM THIS IS A GUESSING GAME
30 REM AN EXAMPLE PROGRAM DESIGNED AS AN INTRODUCTION TO Eloquence
40 REM
50 REM DATE WRITTEN: dd/mm/yy
60 REM AUTHOR : John SMITH
70 REM INSTALLATION: XYZ Computers
75 INTEGER Try,Guess,Number,You,Me
80 REPEAT
90 DISP “~~” ! Cursor home, clear display
100 PRINT “I’m thinking of a number between 0 and 9”
110 PRINT “You have three guesses”
120 Number = INT(RND*10)
130 FOR Try=1 TO 3
140 PRINT “Enter guess number, “;Try
150 INPUT “Now, “;Guess
160 IF Guess=Number THEN Win
170 IF Guess<Number THEN PRINT “Too Low”
180 IF Guess>Number THEN PRINT “Too High”
190 NEXT Try
200 !
210 Lose: PRINT “Sorry, the number was: “;Number;”.”
220 Me = Me+1
230 GOTO Tally
240 Win: PRINT “That’s right!”
250 You=You+1
260 Tally: PRINT SPA(30);”Game Score”
270 PRINT SPA(30);YOU ME”
280 PRINT SPA(30);You;SPA(5);Me
290 WAIT 4000
300 INPUT “Do you want to play again? (YES/NO), “;Reply$
310 UNTIL Reply$=”NO”
320 END

29

Programming with Eloquence
Programming Guidelines

Here are some useful programming tips:

• Annotate your listings using REM and ! comments (see lines 10 through 70). Com-
ments can be used to explain sections of code and to insert blank lines. Both uses en-
hance program readability. Comment delimiters can be placed anywhere within a line.
Any items occurring after the comment will be ignored by the Eloquence interpreter.
The comment ends at the end of the line.

• Use prompts in your input statements (see lines 150 and 300), which appear in place of
the question mark (?) when the program requests data.

• Define variables at the start of a program. This makes program maintenance easier. In
Eloquence, a variable can be defined anywhere within a program and only needs to be
quoted to be defined. For example, there would be no error if line 75 was omitted. If it
did not appear, then the variable Try would be defined as a REAL variable (the default
numeric type) when it first appeared in the program on line 140.

• Use line labels, such as “Win:” in line 240, to allow for relative branching to a named
part of the program (see line 160). A branch to a label is executed just as fast as if the
line number was referenced.

• Use the alternate character sets within string variables, such as the DISP statement in
line 90, which clears the display buffer. The "~" represents cursor-home and clear-dis-
play. The keys corresponding to these characters can vary from terminal to terminal.

• To minimize confusion, avoid using variable names, subprogram names, or line labels
that are identical to Eloquence keywords.

• Always include an END or STOP statement as the last line of every main program.

This programming tips are concerning line numbers and so they are useful for the
character oriented development environment, only.

• So that you can add new lines of code later, number the lines in increments greater than
one. For example, it was possible to insert line 75 between lines 70 and 80, as a gap in
the numbering had been left. If lines 70 and 80 had been consecutive (71, 72) then the
program would have to be renumbered before another line could be inserted between
them.

There is another way to insert lines, without concern for line numbers. This process
involves using thelist andstore commands from the HP-UX prompt. List the
program without line numbers (option -n) to an ASCII text file, insert your lines using
an HP-UX editor or utility, and then store the program. When thestore command
converts the ASCII text file back to an Eloquence program file, it automatically
renumbers the program in increments of one, starting with one. For more information
see chapter , The LIST and list Commands.

• Spacing between line numbers and statements is not important, so you can indent FOR-
NEXT loops or any other structures for clarity. (For more information see chapter , The
INDENT Command, for exceptions.)

30

Programming with Eloquence
Programming Guidelines

Programming Aids

Program Annotations

The Eloquence language provides two ways to include non-executable text fields
in program listings—the REM (remark) statement and the exclamation point (!)
comment delimiter. All characters following either REM or ! are stored with the
program but not executed. Any combination of text can follow each keyword, as
shown in the next example. Notice that ! comment fields can be placed either on
lines by themselves or after program statements. REM statements cannot.

10 ! You can say any **** thing you wish
20 ! in a REM statement
30 ! ***
40 ! * *
50 ! * DOCUMENT YOUR PROGRAMS WELL! *
60 ! * *
70 ! ***
80 PRINT ”Enter Sales Code, ”;Sales_Code
90 IF Sales_code < 1000 THEN Invalid_entry! Error_routine
100 ELSE
110 Enter_asale !Code OK so user permitted entry
120 !to Sales database
130 END IF

The Bit Bucket

When you wish to run programs that involve time-consuming output operations
but do not want the output, you may assign program output to theBit Bucket.
This is an imaginary device where data is dumped and cannot be retrieved.

To assign output from the printer to the bit bucket, specify device address 9 in the
appropriate printer assignment statement—PRINTER IS, SYSTEM PRINTER IS,
or PRINT ALL IS. For example, to send all PRINT and PRINT USING output to
the bit bucket, execute the following:

PRINTER IS 9

NOTE: Be sure to read page 252 before using these statements.

Creating programlines dynamically

With the COMMAND statement it is possible create programlines dynamically in
the program.The COMMAND statement executes a statement contained within a
string expression. The syntax is as follows:

COMMAND string expression ,return variable[]

31

Programming with Eloquence
Programming Guidelines

Any executable, non-declarative statement (not DIM, COM, etc.) can be executed
via COMMAND. For example, the following program uses a COMMAND state-
ment to display a user selected variable:

10 INPUT Variable$
30 COMMAND “DISP “&Variable$
60 END

Note that the string expression can contain any combination of string characters
within quotes, string variable names, substrings and string functions. String oper-
ations are described in page 73 .

One COMMAND statement can be executed by another COMMAND statement.
However one COMMAND statement cannot call itself, nor can it call itself via
intermediate COMMANDs. (The COMMAND statement is not recursive.) For
example, the following sequence is permitted:

10 A$=”COMMAND B$”
20 B$=”DISP C$”
30 C$=”OK”
40 COMMAND A$
50 END

However, the following sequence causesERROR 156:

10 A$=”COMMAND A$”
20 COMMAND A$
30 END

Execution of COMMAND Statements

• There are three general forms of COMMAND statement execution available:

1 Scan/parse Eloquence statement contained in a string expression and execute.

2 If the first character of a string expression is an exclamation mark (comment), a sys-
tem command is executed. Stdout and stderr are redirected to SYPR. You can redi-
rect them with output redirection.

3 If the first character of a string expression is an colon (:), a system command is ex-
ecuted. In this form it is possible to start a interactiv process, as an editor or a shell,
except the ’ksh’.

• It is possible to execute HP-UX and Windows commands through the Eloquence COM-
MAND statement. The HP-UX command must be enclosed in quotation marks (" ")
and begin with an exclamation mark (!).

It also supports the specification of a result string. If present, the output of a HP-UX
command will be returned in the result string instead being output to theSYSTEM
PRINTER.

Here is an example:

COMMAND "!uname -i",Serial$

32

Programming with Eloquence
Programming Guidelines

DISP "Your serial number is ";Serial$

This example reads the serial number of the system and copies the output in the vari-
ableSerial$.

If the HP-UX or Windows command fails, you will receive error number 170, or a
more detailed error code if you specified the return variable.

• It is possible to execute interactive HP-UX processes, as an editor or a shell, except the
’ksh’.

Here is an example:

COMMAND ":elm"

This example starts the ’elm’ and after quiting this process the eloqcore refreshes the
screen and continues.

33

Programming with Eloquence
Programming Guidelines

Space Dependency

Each line entered is automatically checked by the Eloquence interpreter. This
check not only shows syntax errors in the line, but also assists with line spacing.
Two methods of assistance are provided.

The SPACE INDEPENDENT Statement

This mode is the default. Power up or SCRATCH A will set the SPACE INDE-
PENDENT mode. The SPACE INDEPENDENT mode may be entered without a
full reset by typing:

 SPACE INDEPENDENT

or

 SI

Store the following line using the default (SPACE INDEPENDENT) mode.

10 IF Hours_worked>40 THEN GOTO Overtime

You must key in each word correctly. All Eloquence keywords (for example, IF,
THEN, and GOTO) must be in uppercase, while variables (Hours_worked), line
labels (Overtime) and subroutine names must be in initial caps (meaning the first
letter of each word is in uppercase, while the rest of the word is in lowercase).
However, the spacing between words is not important.

10IFHours_worked>40THENGOTOOvertime

10 IF Hours_worked> 40T HE NG OTOOv ertime

Both the above examples will enter the desired line correctly.

The SPACE DEPENDENT Statement

When the SPACE DEPENDENT mode is set, spaces between keywords and vari-
ables (or the lack of them) become significant. Keywords and variables must be
separated from each other by at least one space. However, Eloquence variables,
subprogram names, and labels can now be typed in any combination of uppercase
and lowercase characters.

To set the SPACE DEPENDENT mode, execute:

or

SPACE DEPENDENT

SD

34

Programming with Eloquence
Programming Guidelines

Now, as each line is stored, the computer automatically sets all Eloquence key-
words to uppercase and sets other words to initial caps. Text in quotes, in REM
lines, and after ! comment fields is not affected.

To store the example line using the SPACE DEPENDENT mode, the case of each
character is not important, but intraline spacing (between keywords, variables,
labels, and subprogram names) is essential. Using the SPACE DEPENDENT
mode type in and store either of these lines:

10 IF Hours_worked > 40 THEN GOTO OVERTIME

10 if hours_worked > 40 then goto overtime

Notice that each word is separated by at least one space. Leaving any spaces out
in this example will result either in a syntax error or in an unexpected line. Note
also that the underscore character, "_", cannot be altered. (A minus sign, "−", is
not a lowercase underscore!)

In SPACE DEPENDENT mode, trying to store the following program line gives
an appropriate error message.

10FORI=1TO10

The computer interprets this as an assignment statement and encounters an error
when trying to assign the value 1 to the variable FORI.

Another problem is encountered in SD mode when entering the following:

50WHILEA=50

This example would pass the Eloquence interpreter without error. Unfortunately,
the interpreter would assign the value 50 to the short variable WHILEA, instead
of performing the correct interpretation (that is, to begin a WHILE loop, governed
by the test A=50).

Here are some rules to follow when entering programs in SPACE DEPENDENT
mode:

• Any variable name that is the same as a secondary keyword (function, logical operator,
THEN, etc.) cannot be entered. To minimize confusion, it is a good idea to use variable
names that are not the same as any keyword (primary or secondary).

• A line label that is identical to an Eloquence keyword cannot be entered at the start of
a line.

• The first variable in an implied LET statement cannot be entered if it is the same as a
keyword. This is also the case if the implied LET follows THEN.

• If a program line is not accepted while using the SPACE DEPENDENT mode, try to
enter the line by setting the space independent mode, changing all characters in the line
to their correct upper and lower case forms, and re-entering the line.

35

Programming with Eloquence
Programming Guidelines

Error Messages

There are three main types of errors.

Syntax Errors

Each line entered is automatically checked for syntax errors. The system will not
accept an invalid Eloquence statement, and will help you by showing where the
statement fails. However, a mistake in typing that accidentally forms another valid
Eloquence statement cannot be detected.

How you will be informed about the error, depends on the development environ-
ment

Run-Time Errors

These errors only appear when a program is run. A run-time error will halt the
program and display the line number where the error was found. Consider this
fragment of a payroll program:

190 INPUT ”Please Enter Number of Employees;”,Emp_quantity
200 Emp_bonus = Total_bonus/Emp_quantity
210 PRINT Emp_bonus

If the operator enters an Emp_quantity of 0, an error 31 will occure. Error 31 indi-
cates attempted division by 0. Note that this error can only be detected at run time,
as a division by zero will only occur if an Emp_quantity of 0 is entered.

The line number displayed by a run-time error need not be the incorrect line. It
merely shows the point at which the error was detected. These run-time errors can
be handled (or “trapped”) by the program by using the ON ERROR statement, as
described in page 151 .

Internal Errors

If an irretrievable system condition occurs while Eloquence is running, it stops
and issues an error message. The error message contains the reason Eloquence
stopped, will be different displayed, on HP-UX and Windows NT. Please make a
note of this information, and report it to Marxmeier Software AG. To continue
working, restart Eloquence.

36

Programming with Eloquence
The character oriented development environment

The character oriented development environment

Starting the character oriented Development Environment

The eloq or eloqcore command used to start Eloquence is executed from the HP-
UX prompt. Syntax is as follows:

NOTE: The character oriented development environment is not available on NT platform

Here is an explanation of the options associated with eloq and eloqcore:

-help Causes the usage screen to be displayed. The usage screen
shows the syntax of the command along with the options avail-
able. In other words, it shows the basics of how to use the com-
mand.

-r[ecord] file nameRecords every keyboard action performed by the user and
stores it in the specified file.

-p[lay] file name Plays back the keyboard action in the specified file, previously
recorded using-r file name .

-n[otask] Only applicable for the eloq command. This option disables
Eloquence programmatic task processing. In other words, the
tasking statements REQUEST #, ATTACH #, DETACH, and
RELEASE # are disabled. Note that this option doesnot disable
HP-UX background processing.

-t[race][level] Causes a trace to be performed on the specified program. If no
program name is specified, a trace is performed on any program
run in the Eloquence environment. Levels available are 0
(default)= trace lines, 1 = trace explicit assignments, and 2 =
trace all assignments. Refer to page 282 for more information.

-sfa Activates the statement flow analyzer (SFA). The SFA records
which statements have been executed and the execution time
for each statement within a program.

-taskid # Starts a specific HP-UX process as the primary task. Replace #

eloq

eloqcore

[options] [program name]

37

Programming with Eloquence
The character oriented development environment

with the desired taskid number.

Notice that you can specify either eloq or eloqcore. eloq is an interface to eloq-
core; therefore, using eloqcore is slightly faster. The advantage that eloq has over
eloqcore is that it allows you to use the Eloquence tasking statements—
REQUEST #, ATTACH #, ATTACH, DETACH, and RELEASE #.

Executing the eloq or eloqcore command by itself starts the Eloquence program
and causes a blank screen to appear. At this point, you are in the Eloquence devel-
opment environment. You may create, edit, or run applications. To exit Eloquence
and return to the HP-UX environment, type QUIT and pressRETURN.

Specifying a program name along with the eloq or eloqcore command (for exam-
ple,eloq ABC) causes the program specified to be run in the Eloquence environ-
ment. Once the program has completed, control returns to the HP-UX
environment.

Input Redirection

You can use input redirection, as follows:

Example:

eloqcore program name input file name

and you can “press” a softkey by entering a line such as

:KEY#4

in the input data file.

Quitting Eloquence

The QUIT command terminates Eloquence, but gives a warning if a program has
been modified but not stored, and gives you the alternative of cancelling.

The QQUIT command terminates Eloquence without giving such a warning.

QUIT and QQUIT donot check for “secondary” tasks.

Program Execution and Edit Commands

The following commands help you enter, run, and edit programs. It is important to
note that these commands are only available when running the character oriented
development environment. This is not intended to be a complete list of all devel-
opment environment commands and statements. These are simply the specific
commands to run and edit a program. For more information on storing and retriev-
ing files, refer to page 195 and page 36 later in this chapter.

38

Programming with Eloquence
The character oriented development environment

All these commands exceptlist andstore (lower case) are executed from
within Eloquence. Thelist andstore commands are executed from the HP-
UX prompt. To execute a command, type it on the terminal and pressRETURN.

The development commands are:

RUN Runs an Eloquence program.

CONTINUE Continues running a program.

AUTO Automatically numbers lines.

REN Renumbers program lines.

DEL Deletes one or more program lines.

FETCH Displays one program line for editing.

HOP ’Advanced step’ functionality

LIST and list Displays or prints a list of program lines.

[RE-]STORE and
store Syntax checks the current program or an ASCII text file and

converts it to an Eloquence program file.

INDENT Indents all program lines and structured constructs. Refer to
page 161 for a full description of this command.

All development commands except DEL can be executed from the keyboard but
not from a program. For the most part, other Eloquence operations are stored in a
program line or executed from the keyboard.

39

Programming with Eloquence
The character oriented development environment

Parameter Values

The syntax rules used in this manual are listed under page 16 , and a complete list
of terms and definitions are in the glossary. However, the following three terms
are so often used as parameters that they are given here as well:

line number An integer from 1 through 32767.

line label A unique name assigned to a program line. It can contain up to
15 alphanumeric characters including the underscore. The first
character must be a capital letter. The line label is separated
from the line number by one or more spaces and must be fol-
lowed by a colon.

line id A program line can be referenced by either its line number
(GOTO 150) or line label (GOTO Routine). Using line labels
allows your code to be moved and is a useful program docu-
mentation tool.

The RUN Command

The RUN command is used to load and run a specified program. Syntax for this
command is as follows:

 RUN [file specifier [,line id]]

Thefile specifier is a string expression containing the file name and, optionally,
the volume specifier as described in page 195 . The optionalline id specifies a
starting line number. Program files (files with the extension .PROG) can be loaded
and run in this way. For example,RUN "START" loads and runs a program named
START.PROG.RUN "START",50 loads and runs the program named
START.PROG beginning at line 50. For more details on file operations, refer to
page 195 .

If the program to be run is already in memory, it is not necessary to specify thefile
specifier. In this case the following syntax is appropriate:

 RUN [line id]

RUN clears all the variables in a pre-run initialization and then begins execution
of the program lines. The optionalline id references a line in the main program
and specifies that execution is to begin at that line. Omitting theline id causes
execution to begin with the first line in memory. For example, executingRUN 150
causes execution to begin with line 150.

A complete list of the pre-run default conditions can be found in page 383 .

40

Programming with Eloquence
The character oriented development environment

The CONTINUE Command

Program execution, if suspended, may be resumed with the CONTINUE com-
mand. (Program suspension occurs if a PAUSE command is encountered or if
BREAK or CTRL Y is pressed.)

If the optionalline id is not specified, execution resumes with the next program
line to be executed. No pre-run initialization occurs with CONTINUE.

The AUTO Command

The AUTO command allows lines to be numbered automatically as they are
entered and stored.

 AUTO [beginning line number [,incremental value]]

If neither parameter is specified, executing AUTO causes line numbering to begin
with the last line number in memory plus 10 and is incremented by 10 as lines are
stored. The optionalbeginning line number and theincremental value must be
positive integers from 1 to 32767. For example, executingAUTO 5,5 causes num-
bering to begin with 5 and increment by 5.

Automatic line numbering remains in effect until DELETE LINE is pressed or a
program line is executed.

The REN Command

The REN (renumber) command causes program lines in memory to be renum-
bered.

If no parameters are specified, all lines in memory are numbered in intervals of
10, beginning with 10. For example,REN 100,5 causes program lines to be
renumbered in intervals of 5, beginning with line 100 (resulting in 100, 105, 110,
and so on). All line references in the program are automatically adjusted as the
lines are renumbered.

CONTINUE

CONT

line id[]

REN [beginning line number[, incremental value]]

41

Programming with Eloquence
The character oriented development environment

The DEL Command

The DEL (delete) command is used to delete a line or section of a program.

 DEL first line id [,last line id]

NOTE: DEL is allowed as a program statement; however, references to line labels must be local to
the current environment (main program or subprogram).

Specifying one line identifier causes only that line to be deleted. Specifying two
line identifiers causes that block of lines to be deleted. For example, to delete line
40 and lines 100 through 150 from a program, executeDEL 40 andDEL
100,150 .

The DEL SUB statement is available for deleting subprograms, as described in
page 177 .

A program statement also can be deleted by re-entering only the program line
number.

The FETCH Command

Use the FETCH command to bring to the display for editing any program line in
memory.

 FETCH [line id]

When aline id is not specified, the current line is displayed. If the specified line
does not exist, the next-highest numbered line in memory is displayed. If there are
no lines beyond the specified line, the highest numbered line in memory is dis-
played. For example, to fetch line number 300, executeFETCH 300 .

To fetch the highest line in memory, executeFETCH 32767 .

If no program line is active and no line id is specified, the first line is displayed.

FETCH, like LIST, outputs as default to the system printer, unless system printer
8 (display) has been specified.

HOP key

The HOP command provides the same functionality as the ’advanced step’ soft-
key on system softkeyset. In addition of entering the HOP statement in order to
execute a 'step over' or 'advanced step' operation during program debugging, you
may presŝG (ctrl-G).

42

Programming with Eloquence
The character oriented development environment

LASTLINE

The LASTLINE keyword does return the last line number used in current pro-
gram.

This makes it more convenient, to dynamically load subprograms or functions
below the end of the program.

For example:

LOAD SUB "SUBX",LASTLINE+1,1

The LIST and list Commands

Two “list” commands are available in the development version. One is used in the
Eloquence environment (LIST), the other in the HP-UX environment (list).

Both commands can produce a listing of a program; however the following tasks
can only be done by one of the commands:

• Produce a partial listing (only LIST).
• List lines that contain a certain string (only LIST)
• Cross-reference check a program (only list).
• Create an ASCII text file (onlylist).
• Produce a listing without line numbers (onlylist).
• Produce a cross-reference printout (onlylist).

NOTE: Both commands are usable only on Eloquence program files (not .DATA, .FORM, or
.ROOT files).

From Within the Eloquence Environment The LIST command (upper case) is
used to obtain a listing of the program or a section of the program currently in
memory. The listing is output on the device specified as the system printer (the
display is set to be the system printer when Eloquence is started). Syntax for the
LIST command is as follows:

If no parameters are specified, the entire program in memory is listed. If one line
identifier is specified, the program is listed from that line to the end. If two line
identifiers are specified, that segment of the program, including beginning and
ending lines, is listed. If a string is specified, the program lines containing that
string are listed.

LIST
[beginning line id [, ending line id]]

string [; beginning line id [, ending line id]]

43

Programming with Eloquence
The character oriented development environment

For Example:

LIST

Lists the entire program.

LIST 50

Lists the program beginning with line 50.

LIST 200,250

Lists lines 200 through 250.

LIST ”ABC”

Lists all lines containing the string ABC.

LIST ”ABC”;50

Lists all lines beginning with line 50 that contain the string ABC.

LIST ”ABC”;200,250

Lists all lines from 200 through 250 that contain the string ABC.

LIST 50;20

Lists the 20 lines starting at line 50.

To output LIST to a device other than the display, first specify the device via the
SYSTEM PRINTER IS statement. Syntax for this statement is as follows:

All successive system printer output is now directed to thedevice specified rather
than the display (printer number 8). Execute LIST to output a listing of the pro-
gram. For example:

SYSTEM PRINTER IS 0
LIST

To redefine the display as the system printer, executeSYSTEM PRINTER IS 8 .
ExecutingSCRATCH ALL also returns output to the display, as does exiting and
reentering Eloquence or the HP-UX operating system. See page 249 for more
details on SYSTEM PRINTER IS and other printer options.

SYSTEM PRINTER IS
printer number

” file name”

44

Programming with Eloquence
The character oriented development environment

Within the HP-UX Environment

The list command (lower case letters) is used to obtain a listing of a program,
to cross-reference check a program, or to convert a program file (.PROG) to an
ASCII text file. The “list” command is executed from the HP-UX prompt. Syntax
for the command is as follows:

The following options are available:

-l Lists the specified program to the standard output device. This
is the default unless the-x option is specified.

-n This option causes no line numbers to be listed, unless refer-
enced.

-x[lcvs] This option does a cross-reference check on the specified file.
Options for -x are l (labels and line numbers), c (constants), v
(variables), and s (subprograms and functions). The default is
for all the -x options to be set. Refer to page 284 for more
information.

program name Replaceprogram name with the name of a program file.

password If the program was stored in protected mode, then the program
can be listed only, if the correct password is supplied.

user-defined file nameTheuser-defined file name can be any name that conforms
to HP-UX naming conventions. This file will contain ASCII
text.

With the “list” command it is possible to convert an Eloquence program file to an
ASCII text file that can then be changed using an editing program (for example,
vi). This is done by making use of the >user-defined file name option. Once
edited, the “store” command can convert the ASCII text file back to an Eloquence
program file.

list

-l

-n

-x

l

c

v

s

program namepassword[] >user-defined file name[]

45

Programming with Eloquence
The character oriented development environment

For example, the following “list” command converts the Eloquence program file
ABC.PROG to an ASCII text file named abc.txt:

list ABC >abc.txt

At this point, the ASCII text file abc.txt can be edited using the vi editor. Once
editing is completed, abc.txt is converted back to an Eloquence program file using
the “store” command:

store -o ABC abc.txt

The [RE-]STORE andstore Commands

The purpose of thestore command is to do an Eloquence syntax check on an
ASCII text file and convert it to an Eloquence program file. Thestore com-
mand is executed from the HP-UX prompt. Syntax for the command is as follows:

Here is an explanation of the available options:

-help This option causes the usage screen to be displayed. The usage
screen shows the syntax of the command along with the options
available. In other words, it shows the basics of how to use the
command.

-o file name This option is used to specify an output file name. If not speci-
fied, the input file name will be used. Whether the output file
name is specified or not, the extension .PROG is automatically
added to the file name. (Note that this optionmust be specified
if reading from stdin.)

-n This option specifies that an output filenot be created; however,
the syntax of the input file is still checked.

-v This option causes the lines of the file being stored to be output

store

-help

-o file name

-n

-v

-s

-t width

-f line no

-i inc

-e

input file ,password[]

46

Programming with Eloquence
The character oriented development environment

to the standard output device. Normally this is the display.

-s This option activates SPACE DEPENDENT mode. Refer to
page 51 for more information.

-t wdth tab width (default is 8, 0 = off)
When editing your programs in an HP-UX editor (like vi)
rather than the integrated Eloquence editor, tab characters pro-
vide a convenient way to format your source code.
Tab characters in the source code caused a syntax error. When
specifying a tab width, all tab characters read from input file are
replaced by the appropriate number of spaces. A zero tab width
will disable tab expansion.
This may also be controlled by the $TAB directive.

-f lno first line number (default is 1).
When no line numbers are included in source code, store will
provide its own, starting with 1.This commandline switch
makes it possible to define the first line number to use for auto-
matically generated line numbers. This may also be controlled
by the $LINE directive.

-i inc line number increment (default is 1)
This commandline switch makes it possible to define the incre-
ment, used for automatically generated line numbers.
This may also be controlled by the $LINE directive.

-e If the -e commandline argument is present, store will output
error messages is a format more suitable for automatic process-
ing.

input file Replaceinput file with the name of the ASCII text file to be
converted to an Eloquence program file. It is also possible to
replaceinput file with a hyphen (for example,store -o ABC
-). Specifying a hyphen (-) as the input file will force reading
from the standard input device (stdin). If this is done, -ofile
name must also be specified; otherwise, the store command will
not know where to put the data it reads from the standard input
device.

password The program can be secured against listing and re-storeing by
supplying a password

If the -e commandline argument is present, the error message will be of the fol-
lowing format:

47

Programming with Eloquence
The character oriented development environment

 store: "file.in", line 1: IMPROPER STATEMENT
 ^ ^ ^ ^
 | | | The error message
 | | The line number of the input file
 | The name of the input file or stdin if read from stdin
 To indicate it's a message from the store utility

For example:

Put the invalid statement below in a file named "file.in":

 STOP HERE

Without the -e commandline argument, store will output the following error mes-
sage:

 STOP HERE
 ^
 IMPROPER STATEMENT
 store: "file.in", line 37

With the -e commandline argument, store will output the following error message:

 store: "file.in", line 1: IMPROPER STATEMENT

To explain thestore command, suppose you create an ASCII text file using the
vi editor, and it contains the sample program shown in this chapter under
page 44 . Also suppose the name of the ASCII text file is games.txt. The next step
is to check the syntax of the ASCII text file and convert it to an Eloquence pro-
gram file. This is done by issuing the following command:

 store games.txt

Notice that no output file is specified; therefore, the input file name (games) is
used to create the Eloquence program file (games.PROG). This program file is
now ready to be run.

NOTE: If a variable contains thelinefeed character, thestore command cannot proceed.

The following “store” command also could be used:

 store -o GAMES games.txt

The resulting Eloquence program file is GAMES.PROG. Notice that the .PROG
extension is automatically added. If GAMES.PROG had been specified as the out-
put file, the result would have been GAMES.PROG.PROG, sodo not include the
.PROG extension when specifying an output file.

Directives

The following directives, if included in the source code, make it possible to con-
trol the behavior of some store options within the code.

48

Programming with Eloquence
The character oriented development environment

 $TAB wdth

This will define a different tab character handling.

For example:

 $TAB 8

Sets the tab expansion to 8 for subsequent source lines.

 $LINE fline,inc

Defines a different automatically generated line numbers.

For example:

 $LINE 1000,10

Presets the next automatically generated line number to 1000 and the line incre-
ment to 10.

 $LINE 1000

Presets the next automatically generated line number to 1000 and the line incre-
ment to 10.

49

Programming with Eloquence
The character oriented development environment

Using store with the C preprocessor

The C preprocessor is a macro processor which provides the following functional-
ity:

• include files
• define and replace macros

Using the C preprocessor with Eloquence makes it possible to use the preproces-
sor functionality.

For example:

 ! This is a sample program Eloquence program using the
 ! C preprocessor

 #define MAXLOOP 10

 SUB Sample(INTEGER Partno)

 ! include the common block
 #include "common"

 ! The subprogram body
 DBASE IS Db$
 IN DATA SET "PARTS" USE REMOTE LISTS Part_1
 DBGET(Db$,"PARTS",7,S(*),"@",Buf$,Partno)
 ...
 FOR I=1 TO MAXLOOP

 ...
 NEXT I
 ...

 ! include the definitions for PARTS
 #include "PARTS"

 SUBEND

To make this a Eloquence PROG file, you could use the following command line:

 cc -E sample | store -o SAMPLE -

The C preprocessor replaces the #include directives by the referenced file content
and the macros by the definitions. When a syntax error in an included file is
detected, store is able to understand the preprocessor location information and
will report the file name and position.

Please refer to the appropriate HP-UX documentation for more information.

50

Programming with Eloquence
The character oriented development environment

Running a Program

Once the program lines are entered, you can run them immediately. For example,
run the guessing game program on the character oriented development environ-
ment:

RUN ”GAMES” ENTER

I’m thinking of a number between 0 and 9
You have three guesses
Enter guess number, 1
Now, 5
Too low
Enter guess number, 2
Now, 8
Too high
Enter Guess number, 3
Now, 7
Sorry, the number was: 6.

Game Score
You Me

0 1

Do you want to play again? (YES/NO)

This program will run until you enter"NO" (in capitals, with or without quotes) to
the INPUT promptDo you want to play again (YES/NO) . You may halt
the program at any other time by pressingBREAK or CTRL Y. When a program
is halted, the line to have been executed next is displayed.

After halting a program, you can restart it from the line displayed by using the
CONT (continue) command or restart from the beginning by using RUN.

51

Programming with Eloquence
The character oriented development environment

Program Termination

Five statements are available for halting program execution—STOP, END,
PAUSE, WAIT and SLEEP. The STOP statement may appear anywhere in the
program; it halts execution and resets all file and return pointers.

The END statement halts program execution, like STOP, but is intended to be the
last line in the main program. Any lines beyond END can still be executed (via
branching or subroutines). END cannot be executed from the keyboard.

The PAUSE statement suspends execution, but does not reset program or file
pointers. This allows you to do such things as check program variables and mod-
ify lines. Execution resumes by executing the CONT (continue) command.
PAUSE cannot be executed from the keyboard.

Here is a typical use for STOP and END:

120 INPUT “Enter your Sales file access code,”;Salescode
130 IF Salescode < 1000 THEN Access_error
140 ! User code invalid for all Sales file access
150 IF Salescode <> 9999 THEN Unauth_error
160 ! User code invalid for file update, read only allowed
170 ! Pass above tests then OK to update Sales file
180 Sales_update! Start of Sales file update program
 .
 .
 .
560 Access_error:!
570 DISP “Sorry, you are not allowed to enter the Sales file”
580 STOP
590 Unauth_error:!
600 DISP “Sorry, You can’t enter the Sales file update program”
610 DISP “You have read access only”
620 STOP
630 Endit:!
640 END

Note the use of STOP when there are multiple error conditions. Each error thus
can display the correct reason for denying access, and the program will halt. No
other error condition will be executed unnecessarily. Also note the use of the line
label Endit, so the last line can be accessed without executing any error routines.
STOP, of course, can be used anywhere within a program.

The WAIT statement delays program execution a specified number of millisec-
onds before continuing. The syntax is as follows:

 WAIT [numeric expression]

52

Programming with Eloquence
The character oriented development environment

The numeric expression can range from−231 through 231−1 (about 33 seconds); a
negative number defaults to 0. The wait can be interrupted by pressingCTRL Y,
in the character oriented runtime environment or a user-defined softkey. Examples
are given later in this chapter and also in page 151 . More information on SLEEP
is available in chapter 13.

53

Programming with Eloquence
The character oriented development environment

Error Messages

When an error occurs, the terminal beeps and displays either an error number or a
warning message. The number references a description that will help find the
cause of the error. There are three main types of errors.

Syntax Errors

Each line entered is automatically checked for syntax errors. The system will not
accept an invalid Eloquence statement, and will help you by showing where the
statement fails. However, a mistake in typing that accidentally forms another valid
Eloquence statement cannot be detected. Note the following example:

3*(5/7 RETURN

This example causes the messageIMPROPER EXPRESSION to appear on the fol-
lowing line and the cursor to flash below the omitted closing parenthesis. If you
had entered both parentheses correctly, but typed the minus operator "−" instead
of the division sign "/", no error message would be displayed.

If you are using thestore command and an error occurs during the syntax check,
no program (.PROG) file is created.

Run-Time Errors

These errors only appear when a program is run. A run-time error will halt the
program and display the line number where the error was found. Consider this
fragment of a payroll program:

190 INPUT ”Please Enter Number of Employees;”,Emp_quantity
200 Emp_bonus = Total_bonus/Emp_quantity
210 PRINT Emp_bonus

If the operator enters an Emp_quantity of 0, the terminal will displayERROR 31
IN LINE 200 . Error 31 indicates attempted division by 0. Note that this error can
only be detected at run time, as a division by zero will only occur if an
Emp_quantity of 0 is entered.

The line number displayed by a run-time error need not be the incorrect line. It
merely shows the point at which the error was detected. These run-time errors can
be handled (or “trapped”) by the program by using the ON ERROR statement, as
described in page 151 .

Internal Errors

If an irretrievable system condition occurs while Eloquence is running, it stops
and issues an error message. The error message contains the reason Eloquence
stopped, the source-code file name, and the source-code line number. Please make

54

Programming with Eloquence
The character oriented development environment

a note of this information, and report it to Marxmeier Software AG. To continue
working, restart Eloquence. The following internal error message serves as an
example of this type of error:

Internal error processing line 4420
Assertion failed: (ssp->ofs < seg->symsz)
file prerun.c, line 227

Storing a Program

Once the program lines are in memory, you can make a permanent copy on a disk
file by executing the STORE statement. The syntax is as follows:

 STORE "file name"

For example, to create a program file named GAME and store the guessing game
program in it, type in and execute the following:

STORE ”GAME”

This statement assumes that there is no other file on the disk already named
GAME. Later, you may wish to store another version of the program in the same
file by using the RE-STORE statement.

To see what files are now on the disk, execute the CAT (catalog) statement:

CAT
total 4
-rw-rw-rw- 1 john tstctr 1070 Oct 12 10:59 GAME.PROG

The CAT listing shows you that GAME is a program file (.PROG) and requires
1070 bytes of disk space. The program was saved on October 12th at 10:59 (24
hour clock). The program belongs to the grouptstctr and to the userjohn. The
user, group, and others have read and write access to the program.

Later, use the LOAD statement to copy a previously-stored program back into the
computer memory.

For more details on CAT, STORE, RE-STORE and the other storage operations,
refer to page 195 .

55

Programming with Eloquence
The character oriented development environment

NOTE: There is a difference between the STORE statement (upper case) and thestore command
(lower case). The STORE statement is executed from the Eloquence prompt or from within
a program, while thestore command is executed from the HP-UX prompt. Refer to
page 29 and page 32 for more information on thestore command.

NOTE: The STORE statement, like thestore command, is only available in the development
version of Eloquence (not the run-time version).

Listing a Program

To see a copy of the program, use the LIST command. If you have many correc-
tions to make in a program, it is better to list the program on the display and then
edit and store each line from the listing, rather than FETCHing or retyping indi-
vidual lines.

To get a printed listing, first specify the printer’s address by using the SYSTEM
PRINTER IS statement. (The system printer is usually set to address 8.) Then exe-
cute LIST again. For more information on printers, see page 249 .

For example, to obtain a printed listing of the guessing game example, the pro-
gram should be retrieved from the disk, the system printer set to 0, and the LIST
command executed as follows:

LOAD ”GAME”
SYSTEM PRINTER IS 0
LIST

NOTE: The command to obtain a printed listing of the guessing game example from the HP-UX
prompt is as follows:

list GAME | lp

NOTE: This command produces a listing and pipes it to the lp command. Refer to the HP-UX
documentation for more information on piping and the lp command.

The INDENT Command

The INDENT command is used to change all program line indentation. The syn-
tax is as follows:

 INDENT starting column, increment

56

Programming with Eloquence
The character oriented development environment

All program lines are re-positioned with the first character of each keyword start-
ing in the specified column. Keywords are not placed in that column when num-
bers or labels already occupy the column. Comment (!) lines are not moved.
Comments following statements are not moved unless they would overlap the
statement.

Structured constructs (IFTHENELSE, REPEAT, SELECT, LOOP, WHILE) are
indented an additional incremental value. Intermediate keywords in a construct
(CASE, CASE ELSE, etc.) are not indented. If structured constructs do not match
properly, either the indentation does not occur at the starting column at the end of
the program segment or the listing returns to the starting column too soon. In
either case the indentation is reset to the starting column at the beginning of each
program segment (main program, multiple line function, subprogram, etc.).

The INDENT command also re-positions the FOR/NEXT, DEFFN/FNEND, and
SUB/SUBEND system keyword pairs and certain Report Writer constructs. A
sample program indented using INDENT 10,2 is shown on the next page.

NOTE: The maximum line length is 512 characters.

Listed below is the structure of a programbefore executingINDENT:

10 !
20 ! INDENT does not change the position of comment lines.
30 !
40 INPUT ” Enter a number:”;X
50 IF X>10 THEN
60 PRINT ”X>10.”
70 ELSE
80 PRINT ”X<=10”;
90 IF X>0 THEN
100 PRINT ”, but>0.”
110 END IF
120 FOR I=1 TO X
130 Sum=Sum+X

! Trailing comments are not
140 NEXT I

! moved unless they get in
150 DISP ”Sum fro m 1 - ”;VAL$(X);” is”;Sum ! the way.
160 END IF
170 CALL Y
180 END
190 SUB Y
200 DISP ”(ALMOST DONE)”
210 LOOP
220 READ A$
230 EXIT IF A$=” ”
240 DISP A$
250 WAIT 1000
260 END LOOP
270 DATA 5 seconds,4 seconds,3 seconds,2 second,1 second,DONE,”

57

Programming with Eloquence
The character oriented development environment

”
280 SUBEND

Listed below is the structure of the previous programafter executingINDENT
10,2 :

10 !
20 ! INDENT does not change the position of comment lines.
30 !
40 INPUT ” Enter a number:”;X
50 IF X>10 THEN
60 PRINT ”X>10.”
70 ELSE
80 PRINT ”X<=10”;
90 IF X>0 THEN
100 PRINT ”, but>0.”
110 END IF
120 FOR I=1 TO X
130 Sum=Sum+X ! Trailing comments a
re not
140 NEXT I ! moved unless they g
et
150 DISP ”Sum fro m 1 - ”;VAL$(X);” is”;Sum ! in the way.
160 END IF
170 CALL Y
180 END
190 SUB Y
200 DISP ”(ALMOST DONE)”
210 LOOP
220 READ A$
230 EXIT IF A$=” ”
240 DISP A$
250 WAIT 1000
260 END LOOP
270
DATA 5 seconds,4 seconds,3 seconds,2 second,1 second,DONE,” ”
280 SUBEND

Interrupting a Program

The execution of a program can be stopped by pressingCTRL Y. This is known as
interrupting a program. WhenCTRL Y is pressed in therun-time version of Elo-
quence, the program currently loaded is stopped, Eloquence is stopped, and con-
trol returns to the HP-UX operating system. In thedevelopmental version of
Eloquence, what happens whenCTRL Y is pressed depends on where the pro-
gram was started. If started from inside Eloquence, the program is stopped and
control returns to Eloquence. If started from the HP-UX prompt, the program is
stopped, Eloquence is stopped, and control returns to the HP-UX operating sys-
tem.

Other interruptions are made when an error is encountered, the end of a file is
reached, or a softkey (SFK) is pressed. These interruptions can be handled using
the appropriate ON statement. (In other words, you may define action to be taken

58

Programming with Eloquence
The character oriented development environment

whenCTRL Y is pressed using the ON HALT statement.) ON interrupts may be
disabled using the OFF statement. Executing SCRATCH ALL or starting Elo-
quence again also disables ON interrupts.

59

Programming with Eloquence
The character oriented development environment

Program debugging

Once a program is stored in user memory, it can be executed, one line at a time, by
using the single-step mode. The easiest way to enter the single-step mode is by
pressing theBREAK key while the computer is at a ready state. The computer
then displays the first line to be executed. Pressing theBREAK key successively
executes each line, displays any result, and displays the next line to be executed.
The single-step mode is automatically cancelled by RUN or CONT[INUE].

Another way to enter the single-step mode is to execute a GOTO statement from
the keyboard. From this point, continue (as mentioned in the above paragraph) by
pressing theBREAK key to execute each program line.

HOP (Debugging Aid)

Syntax:

 HOP [line id]

HOP will resume execution until reaching either the next line ifline id is not spec-
ified or the line specified. Execution will stop before executing line.

This is an advantage in the debugging process, because functions, subprograms
and loops may be executed, and execution stops after processing.

Example:

 10 FOR I=1 TO 10
 20 X=X+I
 30 NEXT I
 40 DISP X
 50 END

HOP 30 will resume execution until reaching line 30. Line 30 will be displayed. If
you enter HOP execution will continue until line 40 is to be executed.

Tracing Program Operations

A convenient method of debugging program operation is to trace the logical flow
and variable assignments. There are two tracing methods available—statement
tracing and external tracing. These two methods can be used separately or
together; however, in most instances they are used separately.

Statement Tracing

Seven tracing statements are available. Executing each statement sets a corre-
sponding trace mode which outputs all related information to the device currently
set as the system printer (SYSTEM PRINTER IS). The tracing statements avail-
able are as follows:

60

Programming with Eloquence
The character oriented development environment

TRACE Monitors all executed lines for specified program segments.

TRACE WAIT Causes a WAIT instruction to occur after each TRACE output.

TRACE PAUSE Causes a PAUSE instruction to occur at specified program
lines.

TRACE VARI-
ABLES Lists the values of specified variables changed during the spec-

ified program segment.

TRACE ALL VARI-
ABLES Monitors the value of all variables within a program.

TRACE ALL Enables both TRACE and TRACE ALL VARIABLES mode at
the same time.

NORMAL Cancels any previous TRACE modes.

XTRACE Turn external trace within a program on or off.

NOTE: In the development mode of Eloquence tracing statements can be either programmed or
executed from the keyboard. In the run-time mode the statements must already be present
in the program to be run. If not, use the external tracing method.

61

Programming with Eloquence
The character oriented development environment

The TRACE Statement

The TRACE statement is used to trace program logic flow in all or part of a pro-
gram. When any branching occurs in a program, both the line number where the
branch is from and the line number where the branch is to are output. Syntax for
this statement is as follows:

 TRACE [beginning line id [,ending line id]]

When a branch occurs, the output is in the following format:

 TRACE--FROM line number TO line number

If no line ids are specified, all branches in the program are monitored. When one
line id is specified, tracing does not begin until that line is executed. If a second
line id is specified, tracing is switched off when that line is executed. Since
TRACE operates dynamically, tracing may be switched on and off many times
throughout the execution of a program. The beginning line id must be present in
memory or tracing will never occur; the ending line id turns off the TRACE only
if that line number is encountered.

The TRACE WAIT Statement

Use the TRACE WAIT statement in conjunction with any other TRACE state-
ment to cause a specified delay after each statement that causes a trace output. It is
used to monitor and examine trace output as it occurs. Syntax for this statement is
as follows:

 TRACE WAIT number of milliseconds

The delay is specified by a numeric expression in the range -32768 through
32767, which indicates the number of milliseconds after each trace printout. A
negative number defaults to 0.

The TRACE PAUSE Statement

To check whether or not a line in a program is reached, or to monitor the number
of times a specified line is executed, use the TRACE PAUSE statement. Syntax
for this statement is as follows:

 TRACE PAUSE line id [,numeric expression]

When only theline id is specified, the running program stops just before the spec-
ified line is executed. When thenumeric expression is specified, it is rounded to an
integer—call it N. The program will then stop when the specified line is reached
for the Nth time; the line is not executed. Execution is resumed with that line by
executing the CONT[INUE] command. Every subsequent execution of that line

62

Programming with Eloquence
The character oriented development environment

causes execution to pause. This type of tracing can be disabled by letting theline
id be one that is not in memory. The most efficient way is to let it be lower than
the lowest-numbered line. Also see page 282 , later in this chapter.

The TRACE VARIABLES Statement

To trace changes in values of variables without using an output statement, use the
TRACE VARIABLES statement. Syntax for this statement is as follows:

 TRACE VARIABLES variable list

Thevariable list can contain simple numerics, strings, and array specifiers. There
can be from one to five items separated by commas. The value of any variable
which changes is printed. The output is in the following format:

 TRACE--LINE line number variable name [(subscripts)] = value

The line number is the line in which the change occurred. If the change comes
from a keyboard operation, theline number is replaced by KEYBOARD. The new
value of the variable is indicated. In the case of an array, the values of the sub-
script at the time will be printed following the name.

When an entire array changes value, the printout is in the following format:

 TRACE--LINE lne number array name (*) CHANGED VALUE

Tracing variables also detects changes in subprograms or variables passed by ref-
erence. For example, sayTRACE VARIABLES A,B is executed and the value of A
is passed by reference to a subprogram. If the corresponding variable in the sub-
program is changed, a trace message for variable A occurs.

The TRACE ALL VARIABLES Statement

To trace all variables, use the TRACE ALL VARIABLES statement. Syntax for
this statement is as follows:

 TRACE ALL VARIABLES [beginning line id [,ending line id]]

When no line ids are specified, all variables are traced throughout the program.
When one line id is specified, tracing begins after that line is executed. The ending
line causes tracing to stop after that line is executed. TRACE ALL VARIABLES
cancels and is cancelled by TRACE VARIABLES.

This method of tracing can be turned off by letting the first line id be one not in
memory, such as an undefined label or line number lower than the lowest line
number in memory. Also see page 282 , later in this chapter.

The TRACE ALL Statement

63

Programming with Eloquence
The character oriented development environment

Use the TRA
logic and variables. This statement is equivalent to executing both TRACE and
TRACE ALL VARIABLES.

 TRACE ALL

Although the volume of printout is high, TRACE ALL is useful if a logic problem
in a program has not been isolated with selective tracing.

The NORMAL Statement All tracing modes are cancelled by either executing
any SCRATCH statement or by using the NORMAL statement:

 NORMAL

External Tracing

External tracing is initiated when -t is specified with the eloq command, or with
XTRACE inside a program. Note that the eloq command is executed from the HP-
UX prompt. The syntax is as follows:

 eloq -t [race] [level] [program name] [2>trace file]

If no program name is specified, the trace is performed on every program run. If a
program name is specified, the trace will occur on only that program.

Three options are available for thelevel parameter—0 (default), 1, and 2.

Level 0 monitors all executed lines.

Level 1 monitors explicit assignments (for example,A=B*5).

Level 2 monitors implicit assignments like dbget and unpack.

The optional 2>trace file parameter is used to put the output of the trace into a file
or display the output on another terminal. If 2>trace file is not specified, the trace
output is displayed on the terminal, prior to the program output.

To send trace output to a file, replacetrace file with the desired file name. You can
then send this file to the printer or display it on the terminal. Here is an example:

eloq -t ABC 2>abctrace

This command (1) executes the program ABC, (2) performs a trace, (3) routes the
trace output to the file abctrace, and (4) displays the program output on the termi-
nal.

To display trace output on another terminal, replacetrace file with the terminal
address. Here is an example:

eloq -t ABC 2>/dev/tty1p5

64

Programming with Eloquence
The character oriented development environment

This command (1) executes the program ABC, (2) performs a trace, (3) displays
trace output on terminal tty1p5, and (4) displays the program output on the termi-
nal that the command was executed from.

To turn on External tracingwithin a program, use

 XTRACE [tracing level]

Setting external trace level is identical to the-t option when starting Eloquence.
The trace will be directed to stderr in both cases.

NOTE: External tracing is available in either the development or run-time mode of Eloquence.
Note that XTRACE or XTRACE -1 will disable external tracing. XTRACE 2 will have the
same effect as eloqcore -t2 command.

65

Programming with Eloquence
The character oriented development environment

Program Cross-Referencing

The purpose of program cross-referencing is to examine a program file and list
where constants, line numbers, line labels, variables, functions, and subprograms
appear. Cross-referencing of a program is done by using the list command with
the -x option plus the options associated with -x. Note that the list command is
executed from the HP-UX prompt. The syntax is as follows:

 list -x [options]

Options associated with -x are l (labels and line numbers), c (constants), v (vari-
ables), and s (subprograms and functions). If no options are specified with -x, all
of the options (l, c, v, and s) are set. In other words, the default is that a cross-ref-
erence be performed on all line labels, line numbers, constants, variables, subpro-
grams, and functions.

Here is a short program named ADVERT. Following the program is the complete
cross-reference table obtained by executinglist -x ADVERT .

10 OPTION BASE 1
20 INTEGER Not_used ! Variable declared, but not used
30 DIM Sign$(7)[15] ! Constants used in declaratives
40 Sign$(1)=” “
50 Sign$(2)=” “
60 Sign$(3)=” “
70 Sign$(4)=” “
80 Sign$(5)=” “
90 Sign$(6)=” “
100 Sign$(7)=” “
110 DISP “ “,LIN(10)
120 Put_up_sign: ! Label not referenced
130 FOR Line=1 TO 7 ! Line not declared
140 DISP SPA(30);Sign$(Line)
150 NEXT Line
160 RESTORE
170 Again: !
180 READ Message$! Message$ not declared
190 CURSOR (31,13)
200 DISP “ “&Message$&” “
210 WAIT 900
220 IF Message$[1,1]=”D” THEN 240
230 GOTO Again
240 Last_sign: ! Another unreferenced label
250 WAIT 2000
260 CURSOR (29,13)
270 DISP “ “&”Buy Wonder-Shave Cream”&” “
280 END
290 !
300 DATA “ Dina “,” doesn’t “, “ treat him “,” right ...”
310 DATA “ but if “,” he’d shave “,”Dina might!”

The cross reference listing is as follows:

segment: main
Symbol Type References
--------------- ----- ---

66

Programming with Eloquence
The character oriented development environment

1 CONST 220 220 40 130
10 CONST 110
13 CONST 190 260
2 CONST 50
2000 CONST 250
29 CONST 260
3 CONST 60
30 CONST 140
31 CONST 190
4 CONST 70
5 CONST 80
6 CONST 90
7 CONST 100 130
900 CONST 210
240 LINE 220
Again LABEL 170 230
Last_sign LABEL 240
Put_up_sign LABEL 120
Message$ X 200 180 220
Sign$ X(1) 60 100 50 40 30 80 70 90 140
Line R 140 150 130
Not_used I 20

Integer numbers are listed first in the cross reference listing. These include
numeric constants in declaratives, functions, etc. and referenced line numbers.
The right-hand column lists all Eloquence links where each constant or line-num-
ber reference appears.

Next, all names are listed. The second column identifies each name type. Possible
name types are listed in the table below.

A number in parentheses following variable types R, S, I or X indicates the array’s
number of dimensions. The right-hand column lists all line numbers where each
label appears.

Table 1 Summary of Image Symbols

Type Description Type Description

LABEL Line Labels R Real Precision Variable

SUBP Subprogram Labels S Short Precision Variable

N FUN Numeric Functions I Integer Precision Variable

$FUN String Functions X String Variable

LINE Line Numbers D Double Integer Precision Vari-
able

CONST Constants

67

Programming with Eloquence
The character oriented development environment

The SCRATCH Statement

All or part of the user work area can be erased using a SCRATCH statement.

Here is a summary of the SCRATCH statements:

SCRATCH Erases programs and variables.

SCRATCH A[LL] Erases the entire user area.

SCRATCH C Erases the values of all variables, including those in common
(COM).

SCRATCH P Erases programs and variables.

SCRATCH V Erases the values of all variables except those in common. Do
not use this statement in subprograms.

NOTE: If SCRATCH, SCRATCH A, or SCRATCH P is executed in a program,which run in run-
time mode, the program and Eloquence will stop, thus returning control to the HP-UX
environment.

The Reset Table in page 384 lists all conditions reset by SCRATCH statements.

Display Function Characters

The are two forms of special characters. They are obtained by selecting the appro-
priate special character set. (Consult your terminal manual for the method of
switching character sets.)

• The first type of special character provides terminal display enhancements (inverse vid-
eo, half bright, underline, and flashing). These will be covered fully in page 249 .

• The second type of special character is reached via the “DISPLAY FUNCTIONS”
mode. When in this mode, control characters, such as cursor home or clear display, can
be stored. (The keys corresponding to these characters can vary from terminal to termi-
nal; refer to your terminal manual for further information.) If you list your program, all
control characters are displayed as a tilde (~).

SCRATCH

A

C

P

V

68

Programming with Eloquence
The Integrated Development Environment (IDE)

The Integrated Development Environment (IDE)

Program Development

The new Eloquence development Environment makes developing with Eloquence
even easier and more convenient.

Major benefits are:

• You can have any number of text or program files active at one time, resticted
only by memory limitations.

• The new Browse Toolwindow provides an entry for each editor window. For
Eloquence programs it also provides the list of active segments. Double click-
ing on an entry brings the associated window on top and positions the cursor.

• Splittable editor windows and additional views make it convinient to operate at
several places of the same document at one time without having to scroll
around.

• Language sensitive editor.

• Integrated context sensitive online help.

• Includes its own client/server file sharing capabilities. This will make you inde-
pendend of the availability of specific network file systems (NFS/SMB) and
overcomes network topology and filesystem limitations.

• Consistent authorization scheme in a heterogeneous environment

• Supports the HP Roman-8 and ISO 8859-1 character sets.

• The editor is sensitive about line termination sequences.

• Integrated debugger

The Browser

All files loaded into an editor window have a corresponding entry in the Browse
Toolwindow - it's symbolized by a folder symbol. When an editor window holds a
Eloquence Program, you can open the folder (this is symbolized by the leading +
symbol) and the list of program segments becomes visible.

Double clicking on the folder symbol will bring the associated client window on
top. Double clicking on a segment name will additionally position the cursor at
the beginning of that section. (This will even work if a program has been edited).
Recompiling a program will re-createe its section list.

69

Programming with Eloquence
The Integrated Development Environment (IDE)

This is a real live saver if you ever had to jump between different segments (in
even different files) while editing a program.

Compiling a program

When a program is compiled, all lines are checked for syntax errors (which will
be displayed in the Output Toolwindow) and translated to the internal Eloquence
code. Additionally, the segment list in the Browser Toolwindow is updated. If you
double click on the error message in the Output Window, the cursor is automati-
cally positioned on the offensive line.

Please Note: The compiler will reject to compile a program containing references
to line numbers. Since the Development Environment does not deal with line
numbers those programs would become useless.

Storing and loading program files

When you store a program file, it is compiled automatically. Only programs with
no syntax erros can be stored (as a binary program file). To store a program file as
text, simply change the file type in the save dialog. (Plase take care, that the file
extension is something different than .PROG).

Loading a text file and converting it into a program document is easy. Just load the
text file, open the Document Properties dialog and change the file type.

Debugging

The Eloquence Development Environment contains a simple yet powerfull
debugger, you are probably already familiar with: The editor. When debugging a
program, an arrow will indicate the current line in the source window, which is
about to be executed. When the source code is not already present in a window, it
will be requested from the eloqd or the eloqcore process as a last resort.

Eloquence makes it possible to debug your program in different environ
ments:

• Execute your program on your local system

• Execute your program in a remote system

When initiating a local debugging session, Eloquence starts a local eloqcore pro-
cess which is controlled and monitored by the Develop environment.

When initiating a remote debugging session, the Eloquence contacts the eloqd
server at the remote system. The remote eloqd process will check your authoriza-
tion, start the debug session and connect it to the Development Environment.

70

Programming with Eloquence
The Integrated Development Environment (IDE)

You normally don't want to execute the program in the editor window directly. It
is usually part of a larger project and not self contained. Instead you create a
Debug configuration which tells Eloquence how to invoke the start program of
your project.

• The system where the debug process should be executed on

• The arguments to pass to eloqcore

• The environment to provide to your program

Please Note: You can only have one debugging session active at a time. Starting a
debug session requires configuration of the Debug settings in the Application
Properties.

NOTE: You can only have one debugging session active at a time. Starting a debug session requires
configuration of the Debug settings in the Application Properties.

Initiating a debug session

The debug process is started by selecting the RUN/CONTINUE menu item from
the Program menu pane, the associated accelerator key F5 or the button in the Pro-
gram Toolbar window.

This way, the debug process will be executed. If any breakpoints are defined, it
will be halted at the first breakpoint. If not, it will run until finished.

Alternatively, the debug process can be started by selecting one of the Step com-
mands (Step into, Step over, Step out). In this case, execution of the debug process
will be halted before executing the first line.

The "Run to cursor" command can also be used to start the debug process. In this
case, a temporary breakpoint is set at the cursor location and then the debug pro-
cess will be executed.

Whenever the debug process is suspended, the source file containing the next line
to be executed will be automatically be loaded, unless it's already opened in a
window. The current line is marked by a yellow arrow.

Stepping through a program

After the debug process has been suspended, you can continue it by one of the fol
lowing actions:

• Continue. This will continue execution until the program exists or is halted (e.g. if a
breakpoint is reached).

• Step into. This will continue the execution for one line. (This is similar to the former
Halt key.)

71

Programming with Eloquence
The Integrated Development Environment (IDE)

• Step over. This will continue the execution until the current line has been finished.
(This is similar to the former Advanced Step.) Please note, that recursive calls are taken
care of. Execution will not be suspended in a different recursion level.

• Step out. This will continue execution until the end of the current segment has been
reached.

• Run to cursor. This will set a temporary breakpoint at the cursor location and continue
execution until the program exits or is halted. If another breakpoint is reached before
the cursor line is executed, the debug process will stop at that breakpoint and remove
the temporary breakpoint from the cursor location.

You can use the Halt operation to suspend the execution of a running debug pro
cess after the end of the current line. When a Halt operation is pending, the cor
resonding button is displayed deperessed as a visible acknowledgement.

Breakpoint

A breakpoint causes the debug process to suspend execution, before the marked
program line is executed. Breakpoints can be defined any program file, at any
time. They are even remembered, when you exit the Development Environment.

Breakpoints are associated with the relative line in a program segment (when the
file is loaded or stored), so they may be garbaged, when you edit a particular pro-
gram file outside the Development Environment. You cannot set a breakpoint
unless the program has been previously compiled.

A breakpoint becomes submitted to the debug process, when the program execu-
tion has been suspended. If you add or delete a breakpoint, while the debug pro-
cess is currently executing, you need to suspend execution (for example, by
selecting Halt) to activate the changes.

The Breakpoints dialog (available in the Program menu pane or by pressing the
accelerator key Shift-F9) can be used to review or remove breakpints without hav-
ing the associated file in an editor window. When double-clicking the first col-
umn, the corresponding file is loaded automatically and the cursor is positioned in
the corresponding line.

The Output Toolwindow

Currently by default, each variable modification causes a trace message sent to the
Debug area of the Output Window. This can be disabled by selecting the Trace
menu item in the Program menu pane.

72

Programming with Eloquence
The Integrated Development Environment (IDE)

The Call Stack Toolwindow

The Call Stack Toolwindow visualizes the call chain, how the current line has
been invoked. Double-clicking an entry positions the cursor on the corresponding
source line.

The Variables Toolwindow

The Variables Toolwindow contains the active variables for this segment along
with the current value. Array variables do not display the value of individual ele-
ments by default. They are marked by a leading + sign. To display array elements,
you can expand the array by clicking on the leading + sign. Please note, that val-
ues are truncated at a certain length. This is indicated by a trailing "...". In order to
change a variable value, just double-click it, type the new variable value in the
edit box and press return.

Debugging a character oriented program

You can use the Eloquence Development Environement to debug a character ori-
ented program (a program using FORMs and softkeys). This requires a UNIX
server as character oriented programs are only supported in a UNIX environment.

In addition to a server, you need either a terminal or a terminal emulator (such as
Reflection). After the debug process is started, the input and output is redirected to
the terminal.

In order to debug a character oriented program, you must configure the TTY
device in the Application Properties accordingly. To obtain the tty devicefile
name, you should follow the procedure below:

• If you use a terminal device connected to a serial device, simply enter the tty device file
(for example /dev/tty0p1). You should not run a getty on this port and you must config-
ure it properly before using it (setting baud rate, data format etc.).

• - or -

1 Login to your server system

2 Obtain the tty device using the tty command. The device file is typically similar to
/dev/ttyp4.

3 Disable the shell input (for example by executing a sleep 10000)

4 Enter the device file in the configuration.

Please be aware, that you must define a TERM environment variable, describing
the type of terminal used. After that, start the debug process as usual.

(Yes, I know - this is complicated. We are looking for a way to make this easier
and even automatic.)

73

4

Data Variables and Data handling

Eloquence programs are used to process data for a great variety of applications,
such as company payrolls, order processing, budgeting, and accounting. Each
application has its own requirements for the data it uses. Some programs work
with numeric data while others use only alphabetic. Some programs perform cal-
culations requiring many digits of precision while others need less accuracy.

74

Data Variables and Data handling

Using the versatile Eloquence programming language, you can specify both the
data types and the required precision (or you may simply let the program default
to the standard data types).

The following data-handling statements are introduced in this chapter:

STANDARD, FIXED
and FLOAT Set the format for displayed and printed numbers.
LET Assigns values to variables.
COM and DIM Reserve memory space for variables to be used and specify

bounds for arrays.
REDIM Changes the working bounds for an existing array.
DINTEGER,
INTEGER, SHORT
and REAL Reserve memory space, specify bounds for arrays and

specify precision for selected variables.
TYPE Specify user defined types.
OPTION BASE Sets the default lower bound for arrays.
DATA Specify a list of data values (DATA) and
READ assign the values to variables in a program (READ).
RESTORE RESTORE resets a data pointer to the start of the Data list.
INPUT Requests and accepts data input from the keyboard.
LINPUT Requests and assigns data to a string variable from the keyboard.
ENTER and
LENTER Input data from the display and assign values to variables

without suspending execution.
ACCEPT Accepts data input from the keyboard without displaying it on the

screen.
EDIT Allows changing the current value of a string variable from the key-

board.
XPACK/XUNPACK This statements provide a convenient way to transfer string and

numeric data to and from a string variable.

75

Data Variables and Data handling
Types and Forms of Variables

Types and Forms of Variables

A variable describes a location in memory in which values can be stored. Com-
puter languages use variable names to represent these locations. Then each time
that variable name is quoted, the computer looks up the corresponding memory
location and finds the value. The value contained within a variable may be altered,
hence the name “variable”. Each variable is of one type and holds a value of that
type. For example:

A = 2 * B

Here A and B are variables. The number 2, of course, cannot be altered.

There are two main types of variables available with Eloquence—numeric and
string. Numeric variables hold numbers, both positive and negative, integer or
fractional. Numeric variables are themselves split into three types—INTEGER,
SHORT and REAL. Numeric variables will be fully covered later in the chapter,
but briefly:

• INTEGER & DINTEGER variables hold integers; that is numbers without fractional
parts.

• REAL variables hold numbers, with or without fractional parts, to the maximum preci-
sion.

• SHORT variables also hold numbers with or without fractional parts, but the precision
is less exact.

• TYPE is the keyword to define user defined type.

A string variable can hold any sequence of ASCII characters. ASCII is the acro-
nym for American Standard Code for Information Interchange. It is a standard
way of representing characters and printing commands within a computer. A full
list of ASCII characters is given in see chapter , ASCII Character Codes, in
Appendix A. Note that an ASCII string is capable of holding all the keyboard type
characters (including the blank character) and ASCII non-printing characters.

A feature of Eloquence is that strings may also include alternate character sets and
display enhancements. These include such useful tools as line drawing characters
and inverse video displays and are described fully in see chapter , Display
Enhancement Codes/Character Set Switching Codes, in Appendix A. Use of alter-
nate character sets will entail some added space overhead, as control bytes are
added to the string.

76

Data Variables and Data handling
Types and Forms of Variables

A string may hold the characters 0 through 9.These are characters, not numbers.
Arithmetic calculations cannot be performed on digits that are part of strings. Typ-
ical strings that contain digits not used in arithmetic calculations are strings hold-
ing addresses, part numbers, dates, and department codes.

Each type of variable, except the User Defined Types which can be of type simple
only, can be declared in one of two forms—simple (non-subscripted) or array
(subscripted). Each simple variable holds either one number (simple numeric vari-
able) or a string of characters (simple string variable). An array variable is a col-
lection of data items of the same type having from one to six dimensions. It is a
convenient tool for handling large groups of data within a program.

**

The Eloquence language supports user defined data types. A user defined data
type consists of a list of variables, called member variables. When a type is
derived it inherits all properties (in this case, the member variables) of the base
type. When you derive a type from a base type, you can use the derived type to
call functions or subprograms which accept the base type.

Type definitions are inclosed in the TYPE .. END TYPE keywords. All variable
declarations between will be part of the new data type.

 TYPE TypeName [EXTENDS BaseTypeName] END TYPE

The example below defines the data type Tphone, containing the member vari-
ables Id, Name$ and Phone$.

 TYPE Tphone INTEGER Id DIM Name$[30],Phone$[20] END TYPE

The example below defines the data type Tphone2. Because it is derived from the
type Tphone, it includes all member variables of the base type. It defines the new
member variable Comment$.

 TYPE Tphone2 EXTENDS Tphone DIM Comment$[40] END TYPE

There are different scopes (lifetimes) for type definitions:

If a type is defined globally (in the main program), it is available to all subpro-
grams and functions. In addition, it will be passed to a program which is
LOADed from the initial program. This is similar to COM variables. If
defined in a SUB/FN program segment, a type definition is only known inside the
subprogram. It will be deleted when the segment returns.

**

77

Data Variables and Data handling
Variable Names

Variable Names

Every variable name must abide by the following rules. They apply equally to
both simple and array variables.

• A variable name is from 1 to 15 characters (see string variables below).

• The first character must be an uppercase (capital) letter.

• The remaining characters must be lowercase letters, digits, or the underscore character
(_).

• Each string variable name must end with a dollar sign ($). Note that this $ is not counted
as one of the possible 15 characters; therefore, string variable names may be up to 16
characters long, if the compulsory $ suffix is included.

• Variable names must be unique.

Some examples of legal numeric, string and user defined variable names are as
follows:

Numeric variable
names X

Data1
Order_no

String variable
names A$

Password$
Name_address$
City_state_zip$

User defined variable
names Customer.name

As a general rule, a variable name should be indicative of its contents. Use of the
underscore character (_) will make the name more comprehensible.

Keyword names are always in upper-case. Thus a legal variable could have the
same combination of letters as a keyword, as long as only the first letter of the
variable name was uppercase. This feature is affected by Space Dependency;
therefore, to ease confusion, it is suggested that variable names and keywordsnot
be spelled identically.

78

Data Variables and Data handling
String Variables

String Variables

A string is a series of ASCII characters which can be stored in a string variable.
(In Eloquence a string may also hold display enhancement and line drawing char-
acters.) A string variable can be declared in a DIM or COM statement, which
specifies the maximum length of the string. The maximum length of a string is the
maximum number of characters it can hold. If a string variable is used without
first being specified in a DIM or COM statement, it is implicitly dimensioned to
be 18 characters maximum. The current length of a string refers to the number of
characters currently contained within it.

Each string variable name is terminated with a dollar sign ($). For example:

X$

Home_address$

Part_no1$

Characters can be assigned to a string (or substring) variable using the LET state-
ment:

 [LET] string (or substring) variable [=string variable ...]=string expression

For example:

LET Title$=”Chapter 1”

Asterisks$=”*********”

Married_name$=Husbands_name$=”Smith”

There are many other ways to assign values, as shown later in this chapter.

String Arrays

A string array is equivalent to a numeric array except that its elements are strings.
String array names follow the rules for string variable names. String arrays are
dimensioned in a DIM or COM statement. Every string in the array has the same
maximum length. Like a numeric array, a string array can be implicitly dimen-
sioned. In all string operations, an element of a string array can be used like a sim-
ple string variable. The element is accessed in the same way as a numeric array—
by quoting the array name and the subscript(s).

For example, the following statement prints the string contained in the quoted ele-
ment of the three-dimensional string array Name_array$:

PRINT Name_array$(1,3,4)

79

Data Variables and Data handling
String Variables

String Array Defaults

Explicitly dimensioning a string array conserves memory if the amount of space
required is less than the default (10 elements per subscript). As each default ele-
ment contains an 18 character string, a lot of space may be wasted. Always
dimension string arrays explicitly.

String Expressions

Text within quotes (a literal) is the simplest form of a string. Any ASCII character
can appear within the quotes. If you want to print quotation marks themselves you
must use string concatenation and the CHR$ string function. This is because the
quotes are used as the literal delimiter. This will be dealt with fully in the next
chapter. String expressions may contain any of the following:

• Text within quotes.

• String variable names.

• Substrings.

• String concatenation operations.

• Built-in string functions.

• User-defined string functions.

As with numeric expressions, a string expression can be enclosed in parentheses if
necessary.

Substrings and string concatenation are covered in this chapter. The next chapter
covers the built-in string functions and shows how to define your own string func-
tions.

Substrings

A substring is a portion of a string rather than the entire string. Normally, a refer-
ence to a string variable refers to the entire string. For instance, if
Example_string$ = "ABCDEF" and the statement LET B$ = Example_string$ is
executed, B$ = "ABCDEF". However, sometimes it is necessary to reference only
a portion of a string. Suppose B$ is to be set equal only to the last three characters
of Example_string$. This can be done using the substring designator. Again,
assume that Example_string$ = "ABCDEF". This time execute the statement LET
B$ = Example_string$[4,6]. The result is now B$ = "DEF", not "ABCDEF".

80

Data Variables and Data handling
String Variables

There are three ways to designate a substring. The first method is to indicate the
starting index (position) of the substring, followed by a comma and the ending
index of the substring. All indexes are inclusive. For example, if Example_string$
= "ABCDEFGHIJ", then:

Example string$[1,3] = ”ABC”

Example_string$[4,6] = ”DEF”

Example_string$[7,10] = ”GHIJ”

Example_string$[1,10] = ”ABCDEFGHIJ”

Notice that Example_string$[1,10] is effectively the same as Example_string$.

The second method of designating a substring is to give the position of the first
character, followed by a semicolon and the length of the substring. Continuing the
above example:

Example_string$[1;3] = ”ABC”

Example_string$[4;3] = ”DEF”

Example_string$[7;4] = ”GHIJ”

Example_string$[1;10] = ”ABCDEFGHIJ”

Here too, Example_string$[1;10] is effectively the same as Example_string$.

The third method of designating a substring is to give the starting index of the
substring only. This is really a special case of the first method, in which the ending
index is assumed to be the length of the string. Continuing the example:

Example_string$[1] = ”ABCDEFGHIJ”

Example_string$[5] = ”EFGHIJ”

Example_string$[10] = ”J”

So Example_string$[1] is effectively the same as Example_string$.

Regardless of which method is used, the first position indicator, the second posi-
tion indicator, and the length indicator may be any valid numeric expression.

NOTE: If the numeric expression is not a whole number, it will be rounded to the nearest integer.

Here are more examples:

Example_string$[N,M]

Example_string$[F;L]

Example_string$[N + SQR(Z);L −1] ! so long as Z > 0!

Example_string$[A(I),A(J)]

81

Data Variables and Data handling
String Variables

The NULL String

The null string is a string without any characters at all, not even blanks or non-
printing characters. It is obtained by entering two sets of quotes ("") or giving a
substring length of 0. For example:

A$=Example_string$[1;0] ! Set A$ to the NULL string

Test$=”A null”&A$&”string” !There will be no space between null and
string

A nullstring

There is a special case, however, with a null substring. When a null substring is
assigned to a string then the characters covered by that substring become blanks.
The string length is not altered. For example, using our previous test:

Example_string$="ABCDEFGHIJ"
Example_string$[3;2]=””!Assign a null string to characters 3 and 4

AB EFGHIJ

Characters 3 and 4 are changed to blanks and Example_string$ is still 10 charac-
ters long.

All strings are initialized to the null string by executing RUN, SCRATCH C, or
SCRATCH V.

String Concatenation

The ampersand sign (&) is the string concatenation operator. It joins strings, sub-
strings, and string expressions. No blanks are inserted between strings. Note the
following example:

20 The$=”the”
30 Example$=”I am “&The$&” “&CHR$(38)&” sign.”
40 PRINT Example$
I am the & sign

82

Data Variables and Data handling
String Variables

Examples of String Use

The following example shows substrings in use. Substrings are frequently used to
insert or change characters in a string without affecting the rest of that string. Sup-
pose a university wished to print students’ results. Every letter heading would be
the same; the only change would be in the faculty name.

10 DIM Faculty_title$[22]

The string Faculty_title$ has maximum length of 22 characters.
20 Faculty_title$=”School of ” Initially, Factualty_title is a
30 LET B$=”Business” 10 character string "School of "
50 En$=”Engineering” (indicates a blank space)
60 L$=”Law”
70 Bw$=”Basket Weaving”
80 C$=”Civil”
100 Faculty_title$[11]=B$

The string B$ is inserted into the string Faculty_title$ beginning at the 11th

character of Faculty_title$.

130 PRINT Faculty_title$ Prints: School of Business
170 Faculty_title$[11]=En$

210 PRINT Faculty_title$ Prints: School of Business

If single subscripts are used when assigning substrings (as in the examples above)
and the item being assigned is too short to fill the string, then the rest of the
receiving string is truncated. Thus, continuing the example, when the string L$ is
inserted at character 11 in Faculty_title$, the rest of Faculty_title$ is erased:

250 Faculty_title$[11]=L$
290 PRINT Faculty_title$ Prints: School of Law

If single subscripts are used and the item being assigned is too long for the sub-
string, an error is returned:

420 Faculty_title$[11]=Bw$
ERROR 18 IN LINE 420

An attempt to insert the 14 chars of Bw$ in the 11 remaining chars of
Faculty_title$ returns ERROR 18.

If two subscripts are used when assigning substrings, then the changes will only
be made in the range of the receiving string specified by the subscripts. The length
of the receiving string is retained and any receiving string characters outside the
subscript range will be unaffected. To continue the example:

450 Faculty_title$[11,22]=B$L$
460 PRINT Faculty_title$ Prints: School of BusinessLaw

83

Data Variables and Data handling
String Variables

Note that the concatenation operator (&) does not insert a blank. A better title
would be printed by:

500 Faculty_title$[11,22]=B$&” ”L$
510 PRINT Faculty_title$ Prints: School of Business Law

Now for the Civil Law faculty. Note that if the substring to be added is too short,
the rest of the receiving string, within the range specified by the two subscripts, is
filled with blanks:

450 Faculty_title$[11,18]=C$
460 PRINT Faculty_title$ Prints: School of Civil Law

If the substring to be added is too long, it is truncated to fit in the length specified
by the subscripts—no error is indicated.

590 Faculty_title$[11;12]=Bw$
600 PRINT Faculty_title$ Prints: School of Basket Weavi

Here is a summary of substring errors and their error codes:

Table 2 Columns

Invalid Designator Action

Starting index < 1 Error 18

Ending index < 0 Error 18

Starting index > ending index + 1 Error 18

Starting index = ending index + 1 Null string

String length = 0 Null string

Starting index > current length of string + 1 Error 18

Ending index > dimensioned length of string Error 18

84

Data Variables and Data handling
Numeric Variables

Numeric Variables

Real Variable Numeric Ranges

The range of numeric values which can be entered or stored lies between−
9.99999999999 x 10125 through−1 x 10−130, 0, and 1 x 10−130 through
9.99999999999 x 10125. The range of intermediate calculations is the same as
above, but 16 digits.

Integer Variable Numeric Range

Integer and dinteger variables hold values between−231 to +231−1. All intermedi-
ate calculations are made using the full precision above.

Numeric Precisions

The precision of a number is a function of its size. The greater the number of dig-
its, the greater the accuracy that the variable is able to record. Of course, the
greater the number of digits, the larger the variable and the more storage space it
needs. To give you the maximum choice between space and accuracy, Eloquence
numeric variables can be stored in any of three forms—INTEGER, SHORT, or
REAL (full) precision. The forms used in a program affect the speed of execution,
the precision of the results, and the amount of space needed to store the values.

If you do not specify the form, it defaults to REAL (full) precision. Real precision
variables are allotted twelve significant digits of precision. They are the most
accurate form of holding numeric data but take up the most space.

The following list describes the differing characteristics of the various forms of
Eloquence numeric variables. Use the form most appropriate for your own appli-
cation. Once you have decided, use the declaration statements to specify the for-
mat in each program.

• REAL precision variables hold whole or fractional numbers. They are represented in-
ternally with a mantissa of 12 significant digits and an exponent in the range from−130
through 125. Although real values offer much greater precision than short values, they
occupy twice as much storage space. Note that short values are included in the range of
real values. This form is the default. All other numeric variable forms must be explicitly
defined.

• SHORT precision variables also hold whole or fractional numbers. They are represent-
ed internally with a mantissa of six significant digits and an exponent in the range from
−130 through 125.

85

Data Variables and Data handling
Numeric Variables

• INTEGER precision variables hold whole numbers only (no fractional part). Integer-
precision numbers range from−231 to +231−1. They are held in binary 2’s complement
form, (not exponent and mantissa).

• DINTEGER precision variables hold whole numbers only (no fractional part). Integer-
precision numbers range from−231 to +231−1. They are held in binary 2’s complement
form, (not exponent and mantissa).

All numbers are REAL (full) precision unless otherwise defined using a SHORT,
INTEGER or DINTEGER statement as shown later. Twelve digits of precision is
the maximum. Numbers entered with more than twelve digits will be truncated. In
other words, any digits after the twelfth will be ignored. Note that this removes
only the least significant digits. For example, entering 1234.5678912365 as the
value of a real variable will store 1234.56789124. The same entry, however, will
be rounded to 1234.57 in a short variable or 1235 in an integer variable.

NOTE: Confusion can arise between the maximum size of a numeric variable, and its maximum
precision. The maximum size of a numeric variable is the largest number it is able to store
and is a function of the size of its exponent. The precision shows the accuracy to which the
variable is held and is a function of the mantissa size. Thus a real variable may hold a
number as large as 9.0 x 1099, much greater than twelve digits in decimal form, but its
accuracy is still that of the mantissa.

NOTE: When an INTEGER is loaded from a program into memory is created via a calculation, it
takes up to four bytes of main memory, whereas a DINTEGER takes up the same space on
memory as on disk. When the INTEGER is stored it is put into two bytes of physical disk
space. The DINTEGER remains 4 bytes long. So, if the INTEGER stored, does in fact take
more than two bytes of main memory, it will not fit when stored and error 20 (”integer
overflow”) occurs. To get around this error either store the number in REAL precision,
DINTEGER precision, or decrease the size of the INTEGER causing the problem.

Numeric Display Formats

Three formats are available for displaying and printing numbers—standard, fixed
point, and floating point (scientific notation). Standard format is the default; it is
automatically set when the machine is switched on or reset. The display format
can be changed to fixed or floating point by using the FIXED and FLOAT state-
ments. The STANDARD statement returns the machine to standard format.

Unless IMAGE and PRINT USING statements are used to precisely control the
form of output, all numbers are output with a trailing blank and either a leading
blank or a minus sign, (if the number output is negative). For more information
concerningIMAGE and PRINT USING see “The PRINT Statement” on page 278.

86

Data Variables and Data handling
Numeric Variables

Standard Format

The default standard format is convenient for most displays. It is the form com-
monly used when writing numbers. Standard format is set at power on, RUN, and
SCRATCH A. To reset standard format after a FIXED or FLOAT statement has
been executed, execute the STANDARD statement:

 STANDARD

In standard format, the most significant twelve digits of a number are output. For
example, 9876543210.12345 is output as 9876543210.12. Leading and trailing
zeros are suppressed. For example, 000032.100000 is output as 32.1.

Any number whose absolute value lies between 1 and 10 is output in fixed format
showing all significant digits. Numbers between−1 and 1 are also output in fixed
format if they can be represented precisely in 12 or fewer digits to the right of the
decimal point. All other numbers are output in scientific notation. The form is the
same as FLOAT 11. see “Floating Point Format” on page 87.

Here are a few examples of standard output:

Fixed Point Format

Fixed format is similar to standard, except with fixed format you can specify the
number of digits to appear to the right of the decimal point. If the number output
has fewer digits than that specified, trailing zeros are inserted (leading zeros are
still suppressed). If the number output has more digits than specified in the
FIXED statement then the number is rounded. The following statement sets fixed
point format:

 FIXED number of digits

The parameternumber of digits is a numeric expression, rounded to an integer,
which specifies the number of digits to the right of the decimal point. Its range is
from 0 to 12.

Number Standard Output

15.00 15

.23500 .235

.0547^9 4.38415537301E−12

00987 987

10000^6 1.00000000000E+24

87

Data Variables and Data handling
Numeric Variables

NOTE: Even if the number displayed is an integer, fixed notation adds a decimal point and the
required number of trailing zeros. Similarly FIXED 12 outputs 12 places of decimals for a
SHORT variable. As such a variable only extends to 6 places of decimals. The last 6 places
for a short variable in FIXED 12 display are always zeros. The internal accuracy is never
affected.

Here are some numbers and their FIXED 4 output form:

When fixed point is set and the absolute value number to be output is >= 1E12 or
has more than 17 digits, the format temporarily reverts to floating point. For
example, in FIXED 12, 100000 is output as 1E+05.

Floating Point Format

When working with very large or very small numbers, the floating point format is
most convenient. This scientific notation outputs a number as a mantissa in the
range >1 and <10, followed by an exponent expressed as a power of 10. Syntax of
the FLOAT statement is as follows:

 FLOAT number of digits

The parameternumber of digits is a numeric expression, rounded to an integer,
which specifies the number of digits of precision for the mantissa (the number of
digits to the right of the mantissa’s decimal point). It ranges from 0 to 11.

A number output in floating point format has the form:

±d.d ... dE ±dd
Mantissa Exponent

• If the number is negative, a minus sign will precede the mantissa; if the number is pos-
itive or zero, a space precedes it.

• A decimal point follows the first digit, except in FLOAT 0.

• Digits may follow the decimal point; the number of digits after the decimal point is set

Number FIXED 4 Output

18 18.0000

−.000006 −.0000

−2.75327 −2.7533

5.3111E4 53111.0000

1234567891234.5 1.23456789123E+12

88

Data Variables and Data handling
Numeric Variables

using thenumber of digits parameter following the FLOAT statement.

• The character E is followed by a plus sign or minus sign and two digits. This is the ex-
ponent, and it represents the power of 10 by which the mantissa should be multiplied in
order to express the number in standard format.A negative exponent does not mean a
negative number, it means that the number is <1.

Here are some examples of FLOAT 2 format:

Rounding

A number is rounded before being displayed or printed if there are more digits to
the right of the decimal point than the numeric display format allows. The round-
ing is performed as follows: The first excess digit on the right is checked. If its
value is 5 or greater, the digit to the left is incremented by one; otherwise it is
unchanged.

Whenever a number is rounded as a result of a numeric display format, it is only
the display which is affected. Internally, the number remains as accurate as the
variable holding it will allow. For example, execute the lines below:

A=1.235
1.235
FIXED 2
A
1.24
FIXED 3
A
1.235

The value of A does not alter, only its display.

Number FLOAT 2 Output

−3.2 −3.20E+00

271 2.71E+02

26.377 2.64E+01

.000004 4.00E−06

2.4E78 2.40E+78

89

Data Variables and Data handling
Numeric Variables

Simple Numeric Variables

Any simple numeric variable can be assigned a value using the LET statement.
Syntax for this statement is as follows:

 [LET] simple variable1 [=simple variable2 . . .]=numeric expression

Notice the keyword LET is optional. For example, each of the following state-
ments assigns the value 12 to X:

X=12

LET X = 12

X=SQR(144)

As another example, the following assigns the value 12 to Y and X:

X=Y=3*4

All variables are set to zero when created or when a program is run. They remain
as zero until a value has been assigned to them.

To check the current value of a variable, type in its name, then pressRETURN.

The values of simple variables are erased by executing a SCRATCH statement, as
shown in page 25 .

Types and Values

Eloquence is not a strongly typed language. Thus a numeric variable of one type
(for example, INTEGER) may be assigned a value from a variable of another (for
example, REAL). The value will be converted to the receiving variable’s type
when transferred. The following example explains further:

10 A=1.2345678 ! REAL A implicitly defined as REAL is default
20 SHORT B
30 INTEGER C
40 B=A
50 C=A
60 PRINT ”A is ”;A;” B is ”;B;” C is ”;C
70 END
RUN
A is 1.2345678 B is 1.23457 C is 1

In this example it is not just the display of the value that is altered. The value is
permanently changed in the receiving variable. No error will be indicated in these
transfers, but any attempt to assign a string value to a numeric variable (or vice
versa) will not be accepted.

90

Data Variables and Data handling
Numeric Variables

Numeric Arrays

An array is a structured group of data items, all of the same type. Arrays are very
useful when manipulating large amounts of associated data, as an array is stored
or retrieved as a unit. (When an individual item is required from within an array it
may be accessed uniquely.)The individual data items in arrays are called array
elements, they have all the properties of simple variables of their type.

An array may have from one to six dimensions. Examples of one and two dimen-
sional arrays are shown below. Arrays of three or more dimensions are not so con-
veniently represented on paper, but they can be set up and manipulated easily in a
program.

Subscripts and Array Size

Every numeric array must be explicitly defined in a variable declarative state-
ment; these are described later in this chapter. There, its size is specified by num-
bers in parentheses after its name. These numbers are known as subscripts, and
their presence tells the Eloquence interpreter to assign dimensions to the array—6
dimensions maximum. Thus a maximum of six numbers, separated by commas,
will be accepted. The size of the number tells the interpreter how large the dimen-
sion will be. Assigning a size to an array is known as dimensioning an array. The
number of elements in an array is the product of the number of elements in each
dimension. The above two-dimensional array has one dimension of 3 elements
and the other of 4 elements. Their product, 12, gives the number of elements in
the array.

An element is accessed by quoting its position in the array. This is done by quot-
ing first the array name and then the subscript(s) which point to the element’s
position in the array. The number of subscripts which need to be quoted is the
same as the number of dimensions. In a two dimensional array there will be two
subscripts. It may help, to think of them as coordinates.

A one-dimensional (1*10) element array—ten elements in all:

1.5 2.3 3.4 4.7 10.7 .8 3.5 4.6 2.0 1.1

A two-dimensional (3*4) element array—12 elements in all:

12.95 12.95 11.50 11.50

3.95 3.50 3.50 3.50

.80 .80 .80 .80

91

Data Variables and Data handling
Numeric Variables

Subscripts are integer expressions separated by commas and enclosed in parenthe-
ses. (Any non-integer numeric value quoted as a subscript will be rounded to the
nearest integer.) If a subscript is outside the range defined for an array (either too
large or too small), thenERROR 17 is returned. The range of each subscript is−
32767 through 32767, but the size of an array is limited by memory. The size of
an array depends on both upper and lower subscript bounds.

For example, an array M dimensioned as M(2,3) is an array with two dimensions
having upper bounds of 2 and 3. If the lower bound for each dimension is 0 (the
default value), the array has a total of 12 elements. (As the lower bound for each
dimension is 0, the total number of elements is "0..2" in the first dimension, and
"0..3" in the second. There are thus 3*4 possible combinations of subscript or 12
elements in all.)

The use of columns and rows is to assist in explaining the concept of arrays, and
how an element is accessed. Arrays are not held as grids within the computer, but
the principle is the same.

The OPTION BASE statement is used to change the default lower bound, but the
lower bound may always be defined for any array dimension by using double sub-
scripts. The array M could also be dimensioned M(−1:1,−2:1). The upper and
lower bounds are separated by a colon. Note that the number of elements is still
the same; the size of array M has not altered.

Table 3 Here is a representation of array M:

 Columns 0 1 2 3

Row 0 (0,0) (0,1) (0,2) (0,3)

Row 1 (1,0) (1,1) (1,2) (1,3)

Row 2 (2,0) (2,1) (2,2) (2,3)

Table 4 The subscripts for array M would now be the following:

 Columns −2 −1 0 1

Row -1 (−1,−2) (−1,−1) (−1,0) (−1,1)

Row 0 (0,−2) (0,−1) (0,0) (0,1)

Row 1 (1,−2) (1,−1) (1,0) (1,1)

92

Data Variables and Data handling
Numeric Variables

Array Elements

Every array element must be of the same type; therefore, you cannot mix REAL
and INTEGER elements in one array. As each element in the array is referenced
by using subscripts (and can be used like a simple variable), M(1,0) refers to an
element in array M which may be assigned a value and used in calculations and
other programming operations. For example:

M(1,0) = 10

A = M(1,0)/7

PRINT M(1,0)

Since a subscript is a numeric expression evaluating to an integer, numeric
expressions and variables may be used as subscripts. This allows powerful pro-
gramming constructs:

30 FOR I = −2 TO 1
40 READ M(1,I)
50 NEXT I

It is thus much easier to loop through the elements of an array, when loading large
amounts of data, than to use multiple INPUT statements. The larger the array, the
greater the time saved.

All elements of an array can be specified collectively in an input or output opera-
tion by using the array identifier. For example:

PRINT A(*)

prints the entire array A. The MAT PRINT statement is also available to print
arrays, as shown in page 297 .

The maximum size of an array is specified in a DIM, COM, REAL, SHORT,
INTEGER or DINTEGER statement, as shown later in this chapter. If an array is
used without being explicitly defined, the default upper bound of the array is set to
10. The lower bound is either 0 or 1, depending on the OPTION BASE setting. To
minimize memory waste and make your programs clearer, it is recommended that
you define arrays and other variables explicitly at the start of a program.

93

Data Variables and Data handling
User defined Types

User defined Types

The Eloquence language supports user defined data types. A user defined data
type consists of a list of variables, called member variables. When a type is
derived it inherits all properties (in this case, the member variables) of the base
type. When you derive a type from a base type, you can use the derived type to
call functions or subprograms which accept the base type.

Type definition

Type definitions are enclosed in the TYPE .. END TYPE keywords. All variable
declarations between will be part of the new data type. When the EXTENDS key-
word is present, the new data type is derived from the given base type.

Syntax:

 TYPEtype_name [EXTENDS base_type_name]

 .

 .

 .

 END TYPE

They are different to the string and numeric variable types known in Eloquence,
because they have to be defined before they can be used. The standard types are
internally defined. The type definition can be compared with a design, as example
for a vehicle. With the type definition, it is defined on which parts the vehicle con-
sists. This vehicle has an engine_type, a number of wheels, a colour and so on.

Example:

TYPE Tvehicle

 DIM Engine$[1]

 INTEGER Wheels

 DIM Colour$[20]

 .

 .

 .

END TYPE

In a TYPE constructions only DIM, INTEGER, DINTEGER, SHORT, REAL and
Comment lines are allowed.

94

Data Variables and Data handling
User defined Types

Exporting Types

Type definitions can be "exported" to lower calling levels. This is done with the
new EXPORT TYPE keyword:

TYPETname [EXTENDSTbase]

EXPORT TYPETname [EXTENDSTbase]

IN DATA SET ... DEFINE TYPETname [EXTENDSTbase]

IN DATA SET ... EXPORT TYPETname [EXTENDSTbase]

By default a type definition is local to the current segment. This is also true for
types defined in the main segment. Therefore, types used in COM statements must
be "exported" in order to be usable in a subprogram. Otherwise a runtime error
message will be issued.

NOTE: This is a behaviour change.Initially, all types defined in the main segement were global.

Type scope

A type definition is local by default and is only visible within the local segment.
When a type is "exported" it becomes visible to subsequently called levels. When
a segment defines a type with a name which has been exported from a higher
level, it will temporarily replace the exported type in the current function or sub-
routine.

When a segment defines and EXPORTs a type with a name which has been
exported from a higher level, the newly exported type permanently replaces the
former type for all subsequently called lower level segments. If the type which is
most recently defined is not EXPORTed, the previously exported type again
becomes available to lower called segments.

Derived Types

It is very helpful to create types, which are a superset of an existing type. They are
derived from an existing type, called Base-Type. It inherits all the members of the
Base-Type and have individuell members added.

In the above example derived types as car, track or motorcycle from the Base-
Type Tvehicle are possible. All of them have inherited the members of Tvehicle
and some individuell members.

Example:

TYPE Car EXTENDS Tvehicle

95

Data Variables and Data handling
User defined Types

 DIM Engine_type$[30]
 INTEGER Power, Persons
END TYPE

A new type can be derived fromcar again and all members are inherited, the one
from the Base-TypeVehicle and the members fromcar.

Please note, that a base type can be defined after a derived type. It must be defined
however before a derived type is instantiated.

Nested types are not supported, this means that it is not possible to define a user
defined type as a member of a user defined type.

Type instantiation

Since a type definition is merely a blueprint rather than a real object, it must be
instantiated before it can be used. This can either be done before execution by
using the COM and DIM statements or at runtime with the NEW statement.

DIM and COM statements:

 COM Instance_name:Type_name

 COM Instance_name AS Type_name

 DIM Instance_name:Type_name

 DIM Instance_name AS Type_name

The NEW statement:

 NEW Instance_name:Type_name

 NEW Instance_name AS Type_name

The Instance_name is the variable name and the Type_name is the name of the
data type. The instance name and data type name are either separated by a colon
or the keywordAS.

Example

DIM Vehicle AS Tvehicle

or

DIM Vehicle:Tvehicle

In addition, the NEW STRUCT statement can be used to create a new, identical
copy of the referenced object.

 NEW STRUCT Instance_name=Instance_Name

The example below creates a new object namedClone. It will be an exact copy of
the referenced objectEntry.

96

Data Variables and Data handling
User defined Types

 DIM Entry:Tphone
 Entry.Name$="Joe Sample"
 Entry.Phone$="(202) 243 1440"
 NEW STRUCT Clone=Entry

Using member variables

Member variables can be used like any other variable. A member variable is spec-
ified by giving the variable name (instance name) and the name of the member
variable, separated by a dot.

 Vehicle.colour$="red"
 PRINT Vehicle.colour$

In addition to accessing single variables, you can specify the whole object at once.
The example below prints all member variables of Entry.

 PRINT STRUCT Vehicle

The STRUCT statement can also be used to copy the value of an object:

 STRUCT A=B

When copying an object to another, both must be compatible.

• Both objects must have the same data type. In this case, all member variables are
copied.

• Both objects must have a common base type. In this case, only the common mem
ber variables are copied.

The STRUCT keyword

The STRUCT keyword can be used with some statements to operate on the whole
object instead of

a single member variable. This is similar to the Array(*) notation in Eloquence
which causes

an operation on the whole array instead of a single element.

The following statements can be used with STRUCT:

• PRINT

• READ

97

Data Variables and Data handling
User defined Types

• PRINT #, READ #

• IN DATA SET USE, IN DATA SET LIST

• PACKFMT

• XPACK, XUNPACK

Runtime type identification

The TYPEOF$ function can be used to identify an instance.

 X$=TYPEOF$(instance_name)

This returns the type name of the given instance.

The IS A operator can be used to categorize an instance.

 IF instance_name IS A type_name THEN ...

If the instance is either of the specified type or derived from it, the IS A operator
returns nonzero.

For example:

 TYPE Tbase

 INTEGER A

 END TYPE

 TYPE Tderived EXTENDS Tbase

 INTEGER Q

 END TYPE

!

 DIM Derived:Tderived,Base:Tbase

 DISP "Base is of type ";TYPEOF$(Base)

 DISP "Inst is of type ";TYPEOF$(Derived)

 DISP "Base is a Tbase =";Base IS A Tbase

 DISP "Base is a Tderived =";Base IS A Tderived

 DISP "Derived is a Tbase =";Derived IS A Tbase

 DISP "Derived is a Tderived =";Derived IS A Tderived

 STOP

Data base integration

The user defined type concept is designed to operate with the Eloquence data
base. The IN DATA SET ... DEFINE TYPE statement can be used to define data
types from the data base schema at runtime, the PACKFMT, IN DATA SET LIST

98

Data Variables and Data handling
User defined Types

and IN DATA SET ... USE have been enhanced to support user defined data types.
For more information about this statement, see chapter , The IN DATA SET State-
ment, in the Data Base Manual.

For example:

DBOPEN(Db$,"",1,S(*))

 ...

 IN DATA SET "CUSTOMER" DEFINE TYPE Tcust

 NEW Cust:Tcust

 IN DATA SET "CUSTOMER" USE STRUCT Cust

 ...

 DBGET(Db$,"CUSTOMER",7,S(*),"@",Buf$,Key$)

 ...

Of course, types can also be defined statically in your program:

 TYPE Tcust

 DIM No$[6]

 DIM Name$[30]

 ...

 END TYPE

 DIM Cust:Tcust

!

 DBOPEN(Db$,"",1,S(*))

 ...

 IN DATA SET "CUSTOMER" USE STRUCT Cust

 ...

 DBGET(Db$,"CUSTOMER",7,S(*),"@",Buf$,Key$)

 ...

99

Data Variables and Data handling
User defined Types

Error Messages

The following runtime errors are used with types:

ERRN Description

13 Array dimensions not specified or undefined type

900 Undefined base type

901 Nested types are not supported

902 Statement not allowed in type definition

903 Illegal or incomplete type definition

905 No such member variable.
 This runtime error occurs, whenever a specified member variable
 cannot be found.

Example program

This section provides a more useful example. It demonstrates, how user defined
types can be used to enhance or replace the current usage of the COMmon block.

! common block

TYPE Tglobal

 INTEGER Iv

 DIM Xv$[18]

 INTEGER A(1:2)

END TYPE

!

COM Global:Tglobal

READ STRUCT Global

DATA 123,"COMMON",1,2

!

PRINT "Global.Iv=";Global.Iv

PRINT "Global.Xv$=";Global.Xv$

PRINT "Global.A(*)=";Global.A(1);Global.A(2)

CALL Sub

STOP

!

SUB Sub

 COM Global:Tglobal

 PRINT "Global.Iv=";Global.Iv

 PRINT "Global.Xv$=";Global.Xv$

 PRINT "Global.A(*)=";Global.A(1);Global.A(2)

SUBEND

100

Data Variables and Data handling
Declaring and Dimensioning Variables

Declaring and Dimensioning Variables

Six variable declarative statements are available to dimension arrays and strings
and declare the precision of numeric variables:

COM

DIM

INTEGER

DINTEGER

SHORT

REAL

They can be placed anywhere in a program. The size (number of dimensions and
bounds of each dimension) of the array, which is specified, is known as the physi-
cal or maximum size. A new working size can be specified for the array, which
cannot be greater than the total number of elements of the physical size. This can
be done using a REDIM statement. The working size refers to the total number of
elements being used. An array identifier, consisting of the array name and *, can
be used to refer to all elements in the working size.

The OPTION BASE Statement

When dimensioning arrays, you may want to specify that the default lower bound
be 1 rather than 0. This is done using the OPTION BASE statement:

 OPTION BASE 1

This statement must come before any of the variable declarative statements used
in a program. Then any lower bound not specified is 1. (Explicitly defining a
lower bound for an array always over-rules an OPTION BASE statement.)

If OPTION BASE 1 is not declared in a program, you may wish to include the
statement:

 OPTION BASE 0

for documentation purposes.

The OPTION BASE statement cannot be executed from the keyboard.

101

Data Variables and Data handling
Declaring and Dimensioning Variables

The DIM Statement

The DIM (dimension) statement is used to dimension and reserve memory for
real-precision numeric arrays and initialize each element to 0. It is also used to
dimension and reserve storage space for simple strings and string arrays. Syntax
for the DIM statement is as follows:

 DIM item1 [,item2 . . .]

 DIM [instance : type_name]

 DIM [instance AS type_name]

Eachitem can be one of the following:

• Numeric array (subscripts).

• Simple string [number of characters].

• User defined type.

• String array (subscripts) [number of characters].

For example:

10 OPTION BASE 1
20 DIM A(4,4),B$[56],C$(2,5),D$(10,10)[30],E(−5;5, −5;5)

Line 20 dimensions array A to be of 16 elements maximum. (The elements are
REAL numeric precision, the default.) B$ is dimensioned as a simple string of 56
characters maximum; C$ is a string array of ten 18-character strings maximum
(the default maximum length for strings); D$ is a string array having one hundred
30-character strings; and E is a real numeric array of 100 elements.

The maximum number of characters that may be specified for a simple string (or
string array element) is 32767. This size may be limited by the memory available.

Note that in a DIM statement the subscripts must be explicitly quoted; it is not
possible to use the default maximum array or string size.

User Defined Type example:

DIM Vehicle AS Tvehicle

DIM Vehicle:Tvehicle

The type has to be defined before the variable can be dimensioned, see chapter ,
User defined Types.

102

Data Variables and Data handling
Declaring and Dimensioning Variables

The NEW statement

The DIM statement is executed during the prerun of the program, so the TYPE
has to be known and defined in the programcode at starttime. This is not always
possible with User Defined Types.

The NEW statement makes it possible to dimension a variable during runtime of
the program.

Syntax:

 NEW instance : type_name

 NEW instance AS type_name

It is possible to create a variable form an already existing one:

Syntax:

 NEW STRUCTA = B

The variableA has the same type as the variableB, after executing this statement.
The contant of variable B is not copied to A.

The INTEGER Statement

The INTEGER statement is used to dimension and reserve memory for integer-
precision variables.

 INTEGER numeric variable1 [(subscripts)] [,num variable2 [(subscripts)]. . .]

For example:

40 INTEGER X,Y(2,2)

declares a simple integer X and an integer array Y.

103

Data Variables and Data handling
Declaring and Dimensioning Variables

The DINTEGER Statement

 DINTEGER numeric variable1 [(subscripts)] [,num variable2 [(subscripts)]. . .]

declares a double integer variable. (see also INTEGER above.)

The SHORT Statement

The SHORT statement is used to dimension and reserve storage for short-preci-
sion variables. Syntax is as follows:

 SHORT numeric variable1 [(subscripts)] [,num variable2 [(subscripts)]. . .]

For example:

50 SHORT A(4,5,6),B(3,2,1),D

declares A and B as short-precision arrays and D as a simple, short precision vari-
able.

The REAL Statement

The REAL statement is used to dimension and reserve memory for real-precision
variables. Syntax is as follows:

 REAL numeric variable1 [(subscripts)] [,num variable2 [(subscripts)]. . .]

For example:

60 REAL M(2,3,4,5),N

dimensions the array M and simple variable N.

The COM Statement

The COM (common) statement is used to dimension and reserve memory for sim-
ple, array and user defined type variables. This includes strings, all four numeric
precisions and user defined types. COM is unique because it reserves memory
space in a special common area which allows data to be transferred to subpro-
grams or to other programs. Of course, data may always be transferred to subpro-
grams using parameters. The COM statement is useful when you wish to share
data among many programs. The syntax is as follows:

 COM item1 [,item2 . . .]

 COM [instance : type_name]

 COM [instance AS type_name]

Eachitem can be one of the following:

104

Data Variables and Data handling
Declaring and Dimensioning Variables

• Simple numeric.

• Numeric array (subscripts).

• Simple string number of characters.

• String array (subscripts) number of characters.

• #file number.

• User defined type.

• String array (subscripts) [number of characters].

In addition, any one of the keywords INTEGER, DINTEGER, SHORT, and
REAL may precede one or more numeric variables.

For example:

70 COM A,B(2,4),C$,#3,INTEGER E,F$(5)[24],G,SHORT H(5),I,DINTEGER
D1,D2

The variables A,B(2,4) and G are real precision. Real precision is assumed at the
beginning of the COM list and for numeric variables declared after any string. All
variables following a numeric precision keyword have that precision until another
type is specified or a string is declared. Thus both H(5) and I are short precision.
The #3 item allows passing an assigned data file of the same number to another
program or subprogram. For example:

Main Program Overlay

10 COM A,B,#1 200 COM A,B,#5
20 ASSIGN #1 TO ”Data”
30 CALL Data_prog
.
.
10 SUB Data prog Start of Subprogram
20 COM C,D,#3
.
.

The file number item in line 10 allows the file assigned in line 20 to remain
assigned in the subprogram (as file #3) and in the overlayed program (as file #5).
COM may occur anywhere in each program and may be edited.

The names of variables in corresponding COM statements need not match. But all
items must be of the same type and be in the same order. Arrays must have the
same number of dimensions and elements. Once a string is dimensioned in com-
mon, it is automatically dimensioned to the same size in all subsequent subpro-
grams.

105

Data Variables and Data handling
Declaring and Dimensioning Variables

COM statements in separate programs need not have the same number of items.
You need only quote the items that other programs or overlays need. A second (or
further) COM statement in the main program will, if shorter, cause the omitted
items to be lost or the extra files to be closed. If the succeeding COM list is longer,
the new items will be dimensioned and initialized.

EXAMPLE OF TYPE USED AS GLOBAL VARIABLE

Other Features of Variable Declarative Statements

DIM, COM, INTEGER, DINTEGER, SHORT, and REAL statements are pro-
grammable only. They may appear anywhere in a program but they must not pre-
cede an OPTION BASE statement. (It is recommended that they be placed near
the start of a program; clearly defined variables make a program easier to read.)

At pre-run initialization, all variables declared in DIM, SHORT, INTEGER, DIN-
TEGER, and REAL are dimensioned and initialized. (”Initialization” means that
numeric variables are set to 0 and string variables to the null string.)

DIM need not be used to assign space for strings with 18 character or less or for
arrays having upper bounds of ten or

less. These can be dimensioned implicitly. (They will be set to the default—18
characters per string and 10 elements per dimension.)

A program can have more than one DIM, SHORT, INTEGER, DINTEGER or
REAL statement, but the same variable name can be declared only once in a pro-
gram segment. The same name, however, may be used for a simple numeric, sim-
ple string, numeric array and string array. For instance:

10 OPTION BASE 1
20 DIM A(5,5),A$[50],A$(10)[80]

These variable names are legal, although confusing.

106

Data Variables and Data handling
Redimensioning an Array

Redimensioning an Array

A new working size for an array can be established by using the statement.

 REDIM array variable1 (redim subscripts)[,array variable2 (redim subscripts)...]

The REDIM subscripts have features and properties identical to normal array sub-
scripts. Any array, once redimensioned, will behave as if it was originally defined
with the new dimensions. That is, accessing an element beyond the new range will
returnERROR 17. Data in variables beyond the new range cannot now be
accessed.

REDIM cannot be used to release memory space for other uses. An array redi-
mensioned as smaller will occupy the same amount of memory; it will just act as
if smaller. When using REDIM, remember that the number of dimensions cannot
change and the total number of elements may not exceed the number originally
dimensioned (meaning, themaximum physical size may not be increased).

10 OPTION BASE 0
20 DIM A(100),B(20,20),Astring$(25)[50],Bstring$(25,25)
30 ! Various arrays dimensioned as examples.
40 REDIM A(50) ! Change array A from A(0:100) to A(0:50).
50 !
60 REDIM A(100:199) ! Now alter A from A(0:50) to A(100:199).
70 !
80 REDIM B(10,15) ! Change B(0:20,0:20) to B(0:10,0:15).
90 !
100REDIM B(1:21,1:21) !Restore B to original size with new lower b
ound.
110 !
120 REDIM A(80),B(5,35) ! Change both arrays at once.
130 !
140 REDIM B(40)!Incorrect number of dimensions may not be altered.
150 !
160 REDIM A(120) ! Incorrect original number of elements exceeded.
170 !
180 REDIM Astring$(10) ! Change Astring$ from (0:25)[50] to (0:10)
[50].
190 !
200 REDIM Bstring$(5,100) ! Change Bstring$ from (0:25,0:25)[18].
210 !to (0:5,0:100)[18] The default string length does not change.
220 !Bstring had 26*26 = 676 elements, now has 6*101=606 elements.
240 END

107

Data Variables and Data handling
Assigning Values to Variables

Assigning Values to Variables

Values can be assigned to variables either from within a program or from external
sources (normally a keyboard or data file). This chapter describes most of the
statements used to assign values; the others, used in file handling, are described in
page 195 . The statements currently covered are as follows:

NOTE: The Keywords INPUT, LINPUT, EDIT, ENTER and LENTER are available on HP-UX
systems, only.

LET

READ (from DATA)

INPUT

LINPUT

EDIT

ENTER

LENTER

The LET statement was introduced earlier. Many other statements also assign val-
ues to variables (READ#, ASSIGN, READ LABEL, etc.) as described in other
chapters of the manual.

The READ and DATA Statements

To assign values to variables from within a program, the DATA statement is used
with READ. The DATA statement provides values; READ specifies the variables
for which values are to be obtained.

 READ variable name1 [,variable name2 . . .]

Text can be quoted or unquoted. For example:

70 DATA 88,April,”100”,”Pay=”,95
80 READ A,Date$,Pay$[5,7],Pay$[1,4],Array(1)

DATA
constant

text

,
constant

text

108

Data Variables and Data handling
Assigning Values to Variables

The variables specified in the READ statement can be any variable type, including
an array identifier which specifies an entire array. The subscripts can be any
numeric expression except one containing a function subprogram (FN) reference.
Array elements are read in order with the rightmost subscript varying fastest.

For example:

10 OPTION BASE 1
20 DIM A(2,2,2) ! A 3-dimensional 8 element array (2*2*2)
30 DATA 1,2,3,4,5,6,7,8
40 READ A(*)
50 PRINT A(*)
60 END
RUN
1 2

3 4

5 6

7 8

The array elements are assigned values in this order:

A(1,1,1)A(1,1,2)A(1,2,1)A(1,2,2)A(2,1,1)A(2,1,2)A(2,2,1)A(2,2,2)

READ is programmable only; it cannot be executed from the keyboard.

The DATA Pointer

The computer uses an internal mechanism called a DATA pointer to locate the
next data item that is to be read. When the program is run, the Data pointer points
to the first (leftmost) item of the first (lowest-numbered) DATA statement in the
current segment. After this item is read the DATA pointer shifts one item to the
right, pointing to the next item to be read. This operation is made each time a data
item is read. After the last item in a DATA statement is read and another value is
required by READ, the DATA pointer locates the next highest numbered DATA
statement and is set to the first item in that statement. If there are no higher-num-
bered DATA statements, the data pointer remains at the end of the previous DATA
statement;ERROR 36 indicates the end of data.

The location of the DATA statement within a program segment is unimportant. If
there are multiple DATA statements, however, make sure they are in the order you
want.

109

Data Variables and Data handling
Assigning Values to Variables

The RESTORE statement

The DATA pointer can be repositioned to the beginning of any DATA statement
using the RESTORE statement:

 RESTORE [line id]

If no line id is specified, the pointer is repositioned to the beginning of the lowest
numbered DATA statement. If the specified line is not a DATA statement, then the
first DATA statement following that line is accessed.

The next example shows that several READ statements can apply to the same
DATA statement. It also shows that string values can be quoted or unquoted,
though quotes are not part of the string. Notice that 7.31 is a string value assigned
to A$.

100 READ A,B,C
110 READ D$,E
120 READ F$
130 DATA 4,5,6,7.31,2.69,”Hours”

The next example illustrates the use of RESTORE. The values in line 30 are
assigned to five simple variables, then re-used as the values in array B.

10 OPTION BASE 1
20 DIM B(5)
30 DATA 4,9,16,25,30
40 FOR I=1 TO 5
50 READ C
60 DISP ”Square root of”;C;” is ”;SQR(C)
70 NEXT I
80 DISP LIN(2)
90 RESTORE 30 ! Parameter not essential as only one DATA line here
100 READ B(*)
110 PRINT B(*)
120 END
RUN
Square root of 4 is 2
Square root of 9 is 3
Square root of 16 is 4
Square root of 25 is 5
Square root of 30 is 5.47722557505

4 9 16 25
30

110

Data Variables and Data handling
Assigning Values to Variables

The INPUT Statement

NOTE: The Keyword INPUT is available on HP-UX systems, only.

The INPUT statement suspends program execution, allowing values in the form
of expressions to be assigned to variables from the keyboard. Syntax is as follows:

When the INPUT statement is executed, a ? or the prompt, if present, appears in
the display line. The prompt may be any combination of characters normally used
to tell the user what the request is. A value can then be input for each variable des-
ignated in the INPUT statement. For instance, the following statement requests
two values (the prompt will be printed once):

340 INPUT ”ENTER NAME AND EMPLOYEE NUMBER”;Emp_name$,Emp_number

Values can be entered individually or in groups (separate each variable with a
comma). Values for strings can be quoted or unquoted but an unquoted value may
not contain a comma. For example, the values “A.Jones” and 250 can be assigned
to the variables above in many ways; here are two:

A.Jones, 250 RETURN

or

”A.Jones” RETURN 5*50 RETURN

The ? reappears afterRETURN is pressed until all values are input. If there is
only one prompt, it will not reappear; ? appears instead. So it is best to use a
prompt with each variable:

360 INPUT ”ENTER NAME”;Name$,”EMPLOYEE NUMBER”;Number

Using a semicolon after the prompt causes the input to be entered on the same dis-
play line as the prompt, as in the previous examples. Using a comma after the
prompt places the entry on the next display line.

PressingRETURN without entering a value causes execution to continue with the
next variable in the list. Variables not assigned values retain their previous value.
For example:

40 X=5
50 PRINT X
60 INPUT ”ENTER THREE VALUES:”;A,B,X

By responding to the INPUT statement with 2,4, X retains its previously assigned
value of 5.

INPUT ”prompt”
;

,

var. name1 , ”prompt”
;

,

var. name2

111

Data Variables and Data handling
Assigning Values to Variables

The variable list can also include array identifiers:

370 INPUT A,B(*)

The INPUT statement is also used without parameters to suspend program execu-
tion. The operator can then enter data into the display, to be read by succeeding
ENTER or LENTER statements (described later). Program execution is resumed
by pressingRETURN.

The INPUT statement is programmable only; it cannot be executed from the key-
board.

The LINPUT Statement

NOTE: The Keyword LINPUT is available on HP-UX systems, only.

The LINPUT statement pauses program operation and allows the operator to enter
an entire display line of information to a string variable. PressingRETURN
assigns the line to that string variable. Syntax for the LINPUT statement is as fol-
lows:

When LINPUT is executed, a ? or the prompt, if present, appears in the display
line. Up to 160 characters can be entered with each LINPUT, although string sub-
scripts could limit the input to less. For example:

380 LINPUT ”ENTER HIS RESPONSE:”,Response$[1,30]

The response could be: "Maximum 30 chars", David said

If a semicolon had followed the prompt above, the string value would appear
immediately following the prompt. PressingRETURN would then input the
prompt along with the string. PressingRETURN without typing in a value (not
even a space) erases the current value of the string and sets it to the null string.

Notice that the LINPUT statement allows quotation marks to be input within a
string variable; this is not possible with the INPUT statement.

The LINPUT statement cannot be executed from the keyboard and LINPUT can-
not enter information from a protected display line (see section , Display
Enhancements, on page 248).

LINPUT ”prompt”
;

,

string variable

112

Data Variables and Data handling
Assigning Values to Variables

The EDIT Statement

NOTE: The Keyword EDIT is available on HP-UX systems, only.

The current value of a string can be changed by using the EDIT statement. Syntax
is as follows:

When the EDIT statement is executed, a ? or the prompt, if present, is displayed
and followed by the current value of the specified string variable.

This value can be edited like any keyboard entry. You can clear the line, allowing
a totally new value to be entered, as with LINPUT. PressingRETURN stores the
characters in the line as the value of the string. A trivial example is shown here:

100 DIM String$[60]
110 String$=”Uncle Sam”
120 EDIT ”CHANGE NAME?”,String$
130 PRINT ”CURRENT NAME IS:”;String$

When line 120 is executed, CHANGE NAME is displayed. The string Uncle Sam
then appears on the next line. The character editing keys may now be used to
change the name. PressingRETURN inputs the entire line into the variable. Line
130 prints the new name.

If a semicolon had followed the prompt in the EDIT statement, the string value
would be displayed immediately following the prompt. PressingRETURN would
then input the prompt along with the string. PressingRETURN without entering a
value re-enters the current value of the string. Clearing the line before pressing
RETURN, will set the variable to the null string.

The limit on the length of the string being edited is 160 characters, the display line
length. This can be avoided by using substrings and multiple EDITs.

The EDIT statement cannot be executed from the keyboard.

EDIT ”prompt”
;

,

string expression

113

Data Variables and Data handling
Assigning Values to Variables

The ENTER Statement

NOTE: The Keyword ENTER is available on HP-UX systems, only.

The ENTER statement reads data already on the display into the specified vari-
ables. It does not pause to allow keyboard entry. The syntax is as follows:

 ENTER variable name1 [,variable name2 . . .]

Data input begins at the current position of the display cursor and continues until
the variable list is filled. As with INPUT, the variables read must satisfy the vari-
able types in the list. If not, an error occurs.

The cursor position can be altered before executing ENTER by using the CUR-
SOR statement (see section , Display Enhancements, on page 248). The ENTER
statement cannot be executed from the keyboard.

The ENTER statement is intended for use with software which places forms on
the display and specifies locations or input fields where the operator enters data
(see the next sample form). After data is entered into the fields, ENTER and
LENTER statements are used to read the data into variables according to a preset
order.

New Customer Entry

Customer Name:

Surname:______________ First name:__________________

Customer Address:

Street:___________________

Town: ______________ State: _____________

Zip Code:________________

Telephone:

Area code:______ Number: _______

NOTE: Enter all the customer address information. PressTAB to move through the form, and press
RETURN when complete.

The following program segment governs the above form. The INPUT statement
on line 240 halts the program. Information on a new customer may then be
entered. TheTAB key is used to move from field to field. TheRETURN key
should be pressed upon completion of the form. Program execution then restarts
and the ENTER statements read the data into the program variables in the preset
sequence. Note that the Address lines, although separate entries on the screen, are
loaded as substrings of one large string variable.

114

Data Variables and Data handling
Assigning Values to Variables

220 Input_data:!
230 CURSOR (5,5) ! set cursor at first field.
240 INPUT ! allow operator to fill fields.
250 CURSOR (5,5) ! Reset cursor to first screen input
260 ENTER Surname$,Firstname$
270 ENTER Address$[1,19]
280 ENTER Address$[20,34],Address$[35,39]
290 ENTER Zip$,Phone$[1,9],Phone$[10,19]

These operations are described more fully in page 249 .

The LENTER Statement

NOTE: The Keyword LENTER is available on HP-UX systems, only.

The LENTER statement inputs data from one line of display into a specified vari-
able, like LINPUT, but, like ENTER, does not pause to allow keyboard entry.
Syntax is as follows:

 LENTER string variable

The line length is limited to 512 characters, although string subscripts in LENTER
could limit the input to less.

LENTER may only be used in a program, and it may not enter data from a pro-
tected display line (ERROR 38 is returned; protected display lines are fully cov-
ered in page 249). Use XLENTER to read a protected line.

The following program uses LENTER to load information provided by a CAT
statement into a string array. The information can then be analyzed. (CAT does
not store data; it merely outputs it to the SYSTEM PRINTER, here, of course, the
display.)

The program prompts for the required volume and the file type which you wish to
examine. The CAT (catalog) statement displays the file catalog for the requested
directory. The Load_array routine then stores the catalog, line-by-line, into the
string array Cat$. The CURSOR statement, line 50, positions the display cursor at
the first line of the catalog. The Search routine finds and lists the files of the spec-
ified type.

The FOR loop in Load_array is performed 150 times (once for each array ele-
ment), unless there are fewer than 150 files in the directory.

115

Data Variables and Data handling
Assigning Values to Variables

10 DIM Cat$(150)[80],Dir$[6],Type$[4]
20 DISP “~~” ! Alternate char set “CURSOR HOME, CLEAR DISPLAY”
30 INPUT “Enter Volume name: “;Dir$
40 INPUT “Now enter the File Type to be listed”;Type$
50 CAT “,”&Dir$! List required catalog
60 CURSOR (1,5) ! Set cursor to 1st char 4th line
70 ! note that the first 4 lines of the display must be skipped
80 !
90 Load_array: ! Load CAT output into array Cat$
100 FOR Line=1 to 150 ! so don’t over-run array boundary
110 LENTER Cat$(Line)
120 NEXT Line
130 !
140 Search: ! Find and display files of specified type
150 DISP “~ ~” ! Alternate char set “CURSOR HOME, CLEAR DISPLAY”
160 DISP SPA(7);”FILE TYPE: “;Type$;SPA(5);” ON VOLUME: “;Dir$
170 FOR Line=1 TO 150
180 IF POS(Cat$(Line),”.”&Type$ THEN DISP Cat$(Line)
200 NEXT Line
210 END

Here is the result of a sample run:

FILE TYPE: PROG ON VOLUME: LOCAL
-rw-rw-rw 1 john users 580 Mar 2 1997 AK.PROG
-rw-rw-rw 1 john users 182 Feb 8 16:35 BK.PROG
-rw-rw-rw 1 john users 344 Mar 2 1997 INFO.PROG
-rw-rw-rw- 1 john users 512 Mar 2 1997 KEYTST.PROG
-rw-rw-rw- 1 john users 960 Feb 12 11:36 LENTER.PROG
-rw-rw-rw- 1 john users 1504 Jan 28 17:40 akprog.PROG

A full description of the CURSOR statement is given in page 249 . CAT and the
other Volume (HP-UX) operations are described in page 195 and page 25 .

The XLENTER Statement

NOTE: The Keyword XLENTER is available on HP-UX systems, only.

With extended LENTER up to 512 characters and protected lines may be
ENTERed.

Syntax:

 XLENTER string variable

Sample hardcopy routine using XLENTER:

SUB Hardcopy
 DIM A$[512] ! Line buffer
 X=XPOS ! Save current x/y position
 Y=YPOS
 PRINTER IS 0 ! Open printer
 FOR I=1 TO 21
 CURSOR(1,I) ! Read and print screen line
 XLENTER A$
 PRINT A$
 NEXT I

116

Data Variables and Data handling
Assigning Values to Variables

 PRINTER IS 8 ! Close printer
 CURSOR (X,Y) ! Restore cursor position
SUBEND

This routine will work with form and protected lines too.

The ACCEPT Statement

NOTE: The Keyword ACCEPT is available on HP-UX systems, only.

The ACCEPT statement loads a string into a string variable without displaying
(echoing) the input. It is used for the entry of sensitive information such as pass-
words, where you do not wish the input to be visible on the screen. Syntax for the
statement is as follows:

 ACCEPT string variable

The ACCEPT statement has certain other characteristics:

• The cursor does not appear while you are inputting the string. Once theRETURN key
is pressed, the cursor appears in its usual state.

• All softkeys are ignored while input is being ACCEPTed.

• Line drawing characters are ignored if you input them. They will not be returned in the
input string.

Here is a sample of code using the ACCEPT statement. The operator has only one
attempt at the password here; more often a loop is used to allow two or three tries.

10 PRINT “Please enter the Sales Ledger Password”
20 ACCEPT Pass$
30 IF Pass$<>”Hyacinth” THEN Inval_error ! Invalid password; no
entry
40 ELSE Sales_ledger ! Password O.K so goto sales ledger
.
.
450 Inval_error: !
460 DISP “Invalid Sales ledger password - entry not permitted”
470 STOP

KBCODE

NOTE: The Keyword KBCODE is available on HP-UX systems, only.

Waits for a key and returns internal code of key.

This internal code is simply the ROMAN8 code (’A’ = 65) for all non function
keys. All function keys return codes of 256 + id (e.g. F1 = 265, F2 = 266as
defined by curses.h).

In this sample program you could use normal keys as softkeys:

117

Data Variables and Data handling
Assigning Values to Variables

 DISP “Select option (1 .. 3 or E)”
 LOOP
 K = KBCODE
 EXIT IF CHR$(K)=”E”
 SELECT CHR$(K)
 CASE “1”,”2”,”3”:
 DISP “-> option “;K-NUM(”0”)
 CASE ELSE
 BEEP
 END SELECT
 END LOOP
 END

This is a more complex example. It could be used as a replacement of the
ACCEPT statement. It will maintain an edit string of given length. For each char-
acter you enter a ’*’ as output. You can correct your input with the BACKSPACE
key. Input will be finished either if you press RETURN or if you enter Max_len
characters:

 DEF FNAccept$(Max_len)
 DIM A$[Max_len]
 LOOP
 C=KBCODE
 SELECT C
 CASE 13 ! CR
 EXIT IF 1
 CASE 0 TO 7,9 TO 12,14 TO 31,>127 ! CONTROL
 BEEP
 CASE 8 ! BACKSPACE
 IF LEN(A$) THEN
 A$=A$[1,LEN(A$)-1]
 DISP “~ ~”; ! “BS SPACE BS”
 ELSE
 BEEP
 END IF
 CASE ELSE ! CHARACTER
 A$=A$&CHR$(C)
 DISP “*”;
 IF LEN(A$)=Max_len THEN
 BEEP
 EXIT IF 1
 END IF
 END SELECT
 END LOOP
 RETURN A$
 FNEND

118

Data Variables and Data handling
Eloquence keyboard handling

Eloquence keyboard handling

Two statement groups allow better control of the Eloquence keyboard processing.

NOTE: These keywords are not available when working with graphical user interface.

Typeahead

Eloquence normally rejects any key pressed while it is busy with a beep signal.
The TYPEAHEAD statement enables the program to control Eloquence keyboard
handling

 TYPEAHEAD n

The typeahead statement adjusts the keyboard mode. Changing the keyboard
mode implies a TYPEHEAD CLEAR operation.

n = 0 Default behavior. Any key pressed while Eloquence is not in
input state will be rejected.

n = 1 Partial typeahead. Any key, which is not a function key is saved
in a typeahead buffer for later processing.

Function keys are executed immediately.

n = 2 Full typeahead. All keys are saved in the typeahead buffer for
later processing.

In TYPEAHEAD mode 1, the program must be aware, that there may be some
saved keystrokes, if reacting upon a function key.

In TYPEAHEAD mode 2, it's not possible to interrupt a program (for example
abort a very long printout) using a function key. Function keys loose their mean-
ing, while not in INPUT mode.

TYPEAHEAD CLEAR

Clear the typeahead buffer. If a character is currently in typeahead buffer, a
beep is output to indicate the loss of input.

 N=TYPEAHEAD

The typeahead function returns the number of characters currently in typeahead
buffer.

119

Data Variables and Data handling
XPACK, XUNPACK statements

XPACK, XUNPACK statements

The XPACK and XUNPACK statements provide a convenient way to transfer
string and numeric data to and from a string variable. They are particular useful in
conjunction with Dialog Manager record objects.

Unlike the PACK USING and UNPACK USING statements, the XPACK and
XUNPACK statements include the variable name in the packed string and use a
variable length string format.

The XPACK statement

The XPACK statement transfers data from each variable of the variable list to the
destination string. A variable list may be specified in three different ways:

• a string expression evaluating in a variable list
• a variable list
• a reference to IN DATA SET LIST variable lists

A reference to a whole array will be resolved into a list of array elements.

As the data is transferred to the destination string, it is converted into string for-
mat and stored along with the variable name and array index.

The XPACK and XUNPACK statements can operate on a STRUCT. STRUCT is
treated as a list of variables.

The XPACK statement packs each member variable in a buffer. The XUNPACK
statement unpacks to a user defined type if it is passed as an argument to XUN-
PACK and the member variable matches the name in the buffer.

XPACK ... USING

 XPACK Dest$ USING <string expression>

Pack destination string variable from variable list specified by the string expres-
sion. The string expression contains a list of variable names separated by a
comma.

For example:

 List$="A,A$,B,B$,A$(1),Array$(*)"

XPACK ... USING REMOTE LISTS

 XPACK Dest$ USING REMOTE LISTS Label [,Label . . .]

120

Data Variables and Data handling
XPACK, XUNPACK statements

Pack destination string variable from variable list as defined by the referenced
remote list(s).

For example:

 XPACK Dest$ USING REMOTE LISTS Label1,Label2
 Label1: IN DATA SET LIST A,A$
 Label2: IN DATA SET LIST ...

XPACK ... FROM

 XPACK Dest$ FROM Variable [,Variable . . .]

Pack destination string variable from variable list.

For example:

 XPACK Dest$ FROM A,A$,B,B$,A$(*)

The XUNPACK statement

The XUNPACK statement transfers data from a string variable into the original
variables. If a variable list is specified, only those variables are unpacked, that are
included in the variable list. It's not possible to unpack a buffer into a different
variable than used to pack the buffer.

 XUNPACK Buf$

Unpack buffer variable into variables as named in the buffer.

For example:

 A$="Test"
 B=123
 XPACK Buf$ FROM A$,B
 A$=""
 B=0
 XUNPACK Buf$

This recovers the initial values of A$ and B.

XUNPACK Buf$ USING <string expression>

Unpack buffer variable into variables as named in the buffer. The string expres-
sion contains a list of variable names separated by a comma. Only variables
included in the variable list are unpacked.

For example:

 XPACK Buf$ FROM A$,B,C
 List$="A$,B"
 XUNPACK Buf$ USING List$

This should unpack the variables A$ and B only.

121

Data Variables and Data handling
XPACK, XUNPACK statements

XUNPACK Buf$ FROM Variable [,Variable ...]

Unpack buffer variable into variables as named in the buffer. Only variables
included in the variable list are unpacked.

For example:

 XPACK Buf$ FROM A$,B,C
 XUNPACK Buf$ FROM A$,B

This unpacks the variables A$ and B only.

XUNPACK Buf$ USING REMOTE LISTS Line_id[,Line_id ...]

Unpack buffer variable into variables as named in the buffer. Only variables
included in the referenced REMOTE LISTS list are unpacked.

For example:

 XPACK Buf$ FROM A$,B,C
 XUNPACK Buf$ USING REMOTE LISTS Label
 Label: IN DATA SET LIST A$,B

XPACK format description

Each variable in a XPACK statement is converted into a string format containing
fields describing variable type, name, index and value.

The following rules apply:

• Format fields are separated by tilde characters ('~').
• All fields are printable (no binary data).
• Numeric values are converted into string.

~ Field separator. The Tilde character ('~').

Type Field type. One of the following:

N numeric
X string
$ End-of-list

Name Name = field name. Up to 15 characters. Must be valid Variable
name. Trailing $ of string variables is omitted.

Idx Array index. 0 = simple variable.

Table 5 Format Fields

Type Name ~ Idx ~ Len ~ Value ... $

122

Data Variables and Data handling
XPACK, XUNPACK statements

First array element is 1 (independent of array bounds and num-
ber of dimensions).

Len Size (number of bytes) of value field.

Value Value field. Any number of characters.

Simple numeric variable
Simple = 47
XPACK Buf$ FROM Simple

Results in the following buffer:

 "NSimple~0~2~47$"

Equivalent Eloquence code:

Buf$="N"&"Simple~"&"0~"&VAL$(LEN(VAL$(Simple)))
 &"~"&VAL$(Simple)&"$"

Simple string variable
Simple$ = "String"
XPACK Buf$ FROM Simple$

Results in the following buffer:

 "XSimple~0~6~String$"

Equivalent Eloquence code:

Buf$="X"&"Simple~"&"0~"&VAL$(LEN(Simple$))&"~"&Simple$&"$"

Array element
A$(1)="TEST"
XPACK Buf$ USING "A$(1)"

Results in the following buffer:

 "XA~1~4~TEST$"

Array
DIM A$(0:3)
A$(0)="000"
A$(1)="111"
A$(2)="222"
A$(3)="333"
XPACK Buf$ FROM A$(*)

Results in the following buffer:

"XA~1~3~000XA~2~3~111XA~3~3~222XA~4~3~333$"

Example Eloquence XUNPACK program

123

Data Variables and Data handling
XPACK, XUNPACK statements

The example program below shows how to unpack a buffer in XPACK format.
This example has been provided only for clarification of XPACK format.

DIM Type$[1],Var_name$[15],Value$[80],Variable$[22]
INTEGER P,Idx,Len

LOOP
 Type$=Buf$[1,1] ! Type
 EXIT IF Type$="$"
 Buf$=Buf$[2]

 P=POS(Buf$,"~") ! locate separator
 Var_name$=Buf$[1;P-1] ! Variable name
 Buf$=Buf$[P+1]

 P=POS(Buf$,"~") ! locate separator
 Idx=VAL$(Buf$[1,P-1]) ! Array index
 Buf$=Buf$[P+1]

 P=POS(Buf$[P],"~") ! Separator
 Len=VAL(Buf$[1,P-1]) ! Value length
 Buf$=Buf$[P+1]

 Value$=Buf$[1;Len] ! Value
 Buf$=Buf$[Len+1]

 IF Idx THEN
 Variable$=Var_name$&"("&VAL$(Idx)&")"
 ELSE
 Variable$=Var_name$
 END IF

 IF Type$="X" THEN
 COMMAND Variable$&"$=Value$"
 ELSE
 COMMAND Variable$&"="&Value$
 END IF
END LOOP

124

Data Variables and Data handling
Memory Consumption

Memory Consumption

Use the following tables to work out the number of bytes needed in main memory
for each type of variable.

 Simple Variables
Real precision 4 bytes + 12 bytes
Short precision 4 bytes + 12 bytes
Integer precision4 bytes + 4 bytes
Dinteger 4 bytes + 4 bytes
String 8 bytes + length (1 byte per character, rounded up to a 4 byte bound-

ary).
 Array Variables

Real precision 8 bytes + 8 bytes per dimension + 12 bytes per element
Short precision 8 bytes + 8 bytes per dimension + 12 bytes per element
Integer precision8 bytes + 8 bytes per dimension + 4 bytes per element
Dinteger 8 bytes + 8 bytes per dimension + 4 bytes per element
String 12 bytes + 8 bytes per dimension + 4 bytes per element + length of

each string (1 byte per character, rounded up to a 4 byte boundary).

The rightmost number shows the space needed in memory for the value; the pre-
ceding numbers show the overhead required for the variable description. (This is
information on the type of variable and subscript information for arrays.) For
example, one REAL variable takes 4 bytes for the variable description and 12
bytes for the full precision number—16 bytes in all.

Control Byte Overhead

Control bytes are automatically added to each end of a string containing display-
enhanced characters or characters from an alternate set (for example, line drawing
or underlining characters).

In general, one byte is added to each end of the string for each alternate character
set used. So a string of blinking, inverse-video, line-drawing characters requires
four additional bytes of memory—two for setting and resetting the enhancement
mode and two for setting and resetting the line-drawing set.

125

5

Operators and Functions

This chapter describes the various operations and functions that can be performed
on numeric and string data. Most applications use only a small subset of the avail-
able operators and functions.

126

Operators and Functions
Operators and Expressions

Operators and Expressions

An operator indicates a mathematical or logical operation to be performed on one
or more values (operands) resulting in a single value. The combination of one or
two operands with an operator is called an expression. For example, 10 + 5 is an
expression consisting of two operands (10 and 5) and one operator (+).

The term operand can refer to a number, a string, or a variable.

An operator is generally placed between two operands, but some operators can
precede a single operand. For instance, the minus sign is an operator which indi-
cates subtraction when it appears between two operands (for example, 512−88),
but it indicates negation when it appears before a single operand (for example,−
1).

Some examples of expressions are as follows:

A − B
X + 1
”AB”&”CD”
−1
+2.14

2.14 *

N*

N$**

”STRING” **

* These are expressions in which the operator is assumed to be a plus sign (+).

** Strings or string variables can also be considered expressions.

Operators are divided into four classes depending on the kind of operation per-
formed—arithmetic, string, relational, and logical (Boolean).

127

Operators and Functions
Arithmetic Operators

Arithmetic Operators

The arithmetic operators are listed in the following table:

Note that, unlike algebraic notation, implied multiplication does not exist in Elo-
quence; thus, A times B must be written as A*B rather than just AB. The opera-
tion of raising a number to a power also requires an explicit operator; thus, AB is
written as either A^B or A**B.

There are two division operators—/ and DIV. Division with the / operator (called
floating-point division) results in a value in the real-precision range. When the
DIV operator is used (integer division), the result is computed using the integer
value of each operator. In either case, the results are returned in real precision. For
example:

3/2 = 1.5
3 DIV 2 = 1

−10/5 = −2.0
−10 DIV 5 = −2

9.999999999/1 = 9.999999999
9.999999999 DI V 1 = 9

Table 6 Columns

Operators Operations Examples

+ add 10+5 = 15

− subtract 10−5 = 5

− negate −2

* multiply 10*5 = 50

/ floating point divide 15/10 = 1.5

^ or ** exponentiate 8^3 = 512

DIV integer divide: A DIV B = 15DIV10 = 1

SGN (A/B)*INT(ABS(A/B)) −15DIV10 =−1

MOD modulo: 38MOD6 = 2

A MOD B = A−(B*INT(A/B)) −13MOD2 = 1

−13MOD−2 = −1

128

Operators and Functions
Arithmetic Operators

The function INT(X), which is used to calculate A MOD B, returns the greatest
integer less than or equal to X. So, using the formula

A MOD B = A − B * INT (A/B), we have:

38MOD6 = 38 − 6 * INT (38/6)
= 38 − 6 * 6
= 38 − 36
= 2

−13MOD2 = −13 − 2 * INT (−13/2)
= −13 − 2 * (−7)
= −13 − (−14)
= 1

−13MOD−2 = −13 − (−2) * INT (−13/ −2)
= −13 − (−2) * 6
= −13 − (−12)
= −1

Expressions with more than two operands are evaluated according to the follow-
ing hierarchy of arithmetic operators:

^ ** highest
* / DIV MOD
+ − lowest

Note the following examples:

5 + 6 * 7 = 5 + 42 = 47
5 * 6 + 7 = 30 + 7 = 37

If operators are at the same level, the order is from left to right in the expression:

30 − 40 + 100 = −10 + 100 = 90
2 + 3^2 − 1 = 2 + 9 − 1 = 11 − 1 = 10

Parentheses can be used to override this order, as shown in the following exam-
ples:

30 − (40 + 100) = 30 − 140 = −110

2 + 3^(2 −1) = 2 + 3^(1) = 2 + 3 = 5

5 + 6 * 7 = 5 + 42 = 47
(5 + 6) * 7 = 11 * 7 = 77

14/7*6/4 = 2*6/4 = 12/4 = 3
14/(7*6)/4 = 14/42/4 = .333.../4 = .08333...

When parentheses are nested, operations within the innermost pair are performed
first:

129

Operators and Functions
Arithmetic Operators

100/((4+6)*2) = 100/(10*2) = 10/20 = 5
2*((3+4) −5)/6 = 2*(7 −5)/6 = 2*2/6 = 2*2/6 = 4/6 = .6666...

130

Operators and Functions
Relational Operators

Relational Operators

When relational operators are used in a numeric expression, the value 1 is
returned if the relation is found to be true; the value 0 is returned if the relation is
false. For instance, A=B is evaluated as 1 if A and B are equal in value, 0 if they
are not equal. If A=1, B=2, and C=3, then (A*B)<(A−C/6) is evaluated as 0
(false) because A times B equals 2, which is not less than 0.5 (the result of (A−C/
6)).

Here is a sample program:

10 INPUT “ENTER THREE VALUES:”;A,B,C
20 Logic=(A*B<C)
30 If Logic THEN
40 PRINT “(A*B<C) is TRUE and has a value of “;Logic
50 ELSE
60 PRINT “(A*B<C) is FALSE and has a value of “;Logic
70 END IF
80 END

Entering the values 3, 4, and 5 results in:

(A*B<C) is FALSE and has a value of 0

Notice that the IF expression is true for any non-zero value.

Relational operators are also used to compare strings. Strings are compared
according to their associated numeric values in the ASCII code (see page 391).
The strings are compared character-by-character until a difference is found or
until the end of a string is reached. If the ends of both strings are found at the same

Table 7 The relational operators are:

Operators Operations Examples

< less than A < B

> greater than A > B

<= less than or equal to A <= B

>= greater than or equal to A >= B

= equals A = B

<> or # not equal to A <> B

131

Operators and Functions
Relational Operators

time, the strings are equal. If the end of one string is reached first, however, then
that string is an initial substring of the other, and is considered to be less than the
longer string. For example, all the following expressions are true:

”AB” < “ABC” “AB” is an initial substring of “ABC”.

”AB” = “AB” Both strings are exactly equal.

”B” > “ABC” “B” has a higher numeric equivalent than “A” in the
ASCII code.

”AB$” < “AB*” “$” has a lower numeric equivalent than “*” in the
ASCII code.

The null string ("") is always less than every other string and equal only to another
null string. More information on substrings is given in page 73 . Relational opera-
tors are also usable with foreign-language keyboards, but results may not match
ASCII values.

132

Operators and Functions
Logical Operators

Logical Operators

The logical operators (sometimes called Boolean operators) are AND, OR, EXOR
and NOT. These operators are most frequently used as part of an IFTHEN state-
ment, as shown in the next chapter.

AND compares two expressions. If both expressions are true (a non-zero value),
the result is true. If one or both of the expressions are false (zero), the result is
false.

 numeric expression AND numeric expression

OR (inclusive OR) compares two expressions. If either expression is true, the
result is true. If both expressions are true, the result is true. If both expressions are
false, the result is false.

numeric expression OR numeric expression

EXOR (exclusive OR) compares two expressions. If only one of the expressions
is true, the result is true. If both are true or both are false, the result is false.

numeric expression EXOR numeric expression

NOT changes the logical value of an expression. If the expression is true, NOT
changes it to false. If the expression is false, NOT changes it to true.

numeric expression EXOR numeric expression

As in the case of relational operators, if the result is true, a 1 is returned; if the
result is false, a 0 is returned.

The expressions that the logical operators compare can be either relational or non-
relational:

• If the expression is relational , its true or false designation is determined by the relation-
al operation.

• If the expression is non-relational (A), it is true if its arithmetic value is not equal to 0;
it is false if its arithmetic value equals 0.

For the following examples, assume A=0, B=2, C=4, and D=4:

A < B AND C = D True. Both relational expressions A<B and C=D are true.

A AND C = D False. The arithmetic value of A equals 0 (false).

133

Operators and Functions
Logical Operators

A OR B True. The arithmetic value of B is not 0 (so B is true).

A EXOR B True. One value is true and one value is false.

NOT A True. A is 0 (false).

NOT B OR NOT C False. NOT B is false and NOT C is false.

 A truth table can be used to summarize logical operations:

Table 8 Columns

A B A AND B A OR B A EXOR B NOT A

T T 1 1 0 0

T F 0 1 1 0

F T 0 1 1 1

F F 0 0 0 1

134

Operators and Functions
Binary Operations

Binary Operations

Binary operations test and manipulate the individual bits within a single 32-bit
word in random access memory. The bit strings referred to in the descriptions are
a contiguous series of sixteen bits (1’s and 0’s) stored in an INTEGER. The right-
most bit (least significant) is designated as bit 0; the leftmost (most significant bit)
is bit 31. Operands may be real expressions but must evaluate to a 32-bit signed
integer.

 BINAND (BINary AND) compares the individual bits in two values which have
been rounded to integers. The results are stored in an INTEGER and consist of a 1
in each bit position for which both inputs were 1, and 0’s in each bit for which
both or either inputs were 0. An error occurs if the values cannot be stored in six-
teen bits.

BINAND (numeric expression, numeric expression)

BINIOR (BINary Inclusive OR) compares each bit of two expressions. When a 1
appears in either expression, a 1 is stored in the result. If both bits are 1, a 0 is
stored in the result.

 BINAND (numeric expression, numeric expression)

BINEOR (BINary Exclusive OR) compares each bit of two expressions. If both
bits are 1’s or 0’s, the result is 0. If only one of the bits is 1, the result is a 1.

 BINAND (numeric expression, numeric expression)

BINCMP (BINary CoMPlement) returns a 1 for each bit where the input was a 0,
and a 0 in each bit for which the input was a 1 (this gives the complement of the
input expression). An error occurs if the rounded numeric expression cannot be
stored in an INTEGER.

 BINAND (numeric expression, numeric expression)

BIT (Binary Index) contains two expressions. The second expression is evaluated
and rounded to an integer which must be in the range 0 to 31. This integer is then
used as the index into the binary representation of the integer value of the first
expression. Bit 0 is the least significant bit; bit 31 is the most significant bit. The
function returns an integer containing the value (0 or 1) found in this position.

An error results if the value of the first expression cannot be rounded to an integer.

135

Operators and Functions
Binary Operations

 BINAND (numeric expression, numeric expression)

ROTATE (binary ROTATE function) evaluates two expressions and rounds them
to integers. The first expression is considered a 32-bit word. The function returns
the value, as an INTEGER, of the string obtained by rotating the first expression
the number of positions specified by the second expression MOD 32. If this sec-
ond expression is positive, the rotation is toward the least significant bit, and this
(least significant) bit is rotated to the most significant bit position. If the second
expression is negative, then the rotation is in the opposite direction and bits are
transferred from the most to the least significant position. ROTATE does not
change the value of the first argument.

An error results if either of the rounded numeric expressions cannot be stored in
an integer.

 SHIFT (binary SHIFT function) consists of two expressions which are evaluated
and rounded to integers. The first expression is considered a 32-bit word which is
shifted the number of positions specified by the second expression MOD 32. If the
second expression is positive, the shift is toward the least significant bit. If it is
negative, the shift is in the opposite direction. Bits which are shifted out are lost
and replaced by zeros on the opposite end of the argument. SHIFT does not
change the value of its first argument.

An error occurs if either of the rounded numeric expressions cannot be stored in
an INTEGER.

 SHIFT (numeric expression, numeric expression)

136

Operators and Functions
Operational Hierarchy

Operational Hierarchy

When arithmetic, relational, and logical operators appear in the same expression,
the operations are performed according to this hierarchy:

() (parentheses) highest

^ or ** (exponentiation)
NOT, unary +, −
*,/,MOD,DIV
+, −
=,<,>,<=,>=, or # (relational)
AND
OR,EXOR lowest

Remember that the order of execution for operations of the same priority level is
from left to right. When parentheses are used, however, the operations within
parentheses are executed first.

137

Operators and Functions
The Default ON/OFF Statements

The Default ON/OFF Statements

Many arithmetic errors occur due to either an improper argument value or by
exceeding the computing range. This suspends program execution. It is possible
to override some of these errors by providing a default value for the number
which is out of range. The default values are enabled by executing the DEFAULT
ON statement:

 DEFAULT ON

Errors that can be overriden and their corresponding default values are shown in
the following table:

Default values are disabled by executing the DEFAULT OFF statement:

 DEFAULT OFF

DEFAULT OFF is set at power on or when any SCRATCH statement is executed.

Table 9 Default values

Error (Number) Default Value

Integer precision overflow (20) 2147483647 (231−1) or−
2147483648 (−231) (DINTEGER)−
32768.+32767 (INTEGER)

Full precision overflow (22) + or−9.99999999999E125

Zero to negative power (26) 9.99999999999E+125

LGT or LOG of zero (29) −9.99999999999E+125

Division by zero (31) + or−9.99999999999E+125

X MOD Y, where Y=0 (31) 0

138

Operators and Functions
Built-in Numeric Functions

Built-in Numeric Functions

A function is a routine that manipulates numeric or string data and produces a
numeric or string value as a result. A set of commonly used functions, such as one
to compute the square root of a number, is supplied as part of the Eloquence lan-
guage. These functions are known as built-in functions. The built-in functions that
perform standard numeric routines are:

ABS (X) Absolute value of X.

BACKGROUND Returns 1 if executing in background (stdout redirected or−b
switch on commandline). Implies NO OPERATOR. Otherwise
returns 0.

DROUND (X,Y) Returns the value of X rounded to Y number of digits.

EXP (X) Naperian e raised to the power X.

FRACT (X) Returns the fractional part of X.

INT (X) Largest integer %<= X.

LGT (X) Logarithm to the base 10 of X; X > 0.

LOG (X) Natural logarithm; X > 0.

NO OPERATOR Returns 1 if executing in batch mode (stdin redirected); else 0.
E.g., eloq PROG %< infile.

NUMREC file num-
ber Returns the highest used record number of the file ASSIGNED

to a file number. If the file number is ASSIGNED to an HP-UX
sequential file, this will result in error 58. If this file is being
used as a workfile, it will return the same as WFLEN.

PI Returns the value of π, 3.14159265359.

PID Returns process/parent process id.

PNTR Current ‘PRINTER IS’. Returns current printer number, or:

−3 if PRINTER IS “SPOOLFILE”
−6 if PRINTER IS “STDOUT”
−7 if PRINTER IS “STDERR”
−8 if PRINTER IS “TTY”
−9 if PRINTER IS “CONSOLE”

139

Operators and Functions
Built-in Numeric Functions

PPID Returns parent process id.

PROUND (X,Y) Returns the number X rounded to the power of 10 position
specified by Y.

RND Returns a pseudo-random number in a standard sequence of
numbers > 0 and < 1.

RANDOMIZE (start
value) This will reset the (pseudo-) random number generator to a new

starting value. If the start value is omitted, random number gen-
erator starting value is derived from current system time. If the
optional start value is given, it will first be converted to an inte-
ger value and then the lower 48 bits of it will be used to initial-
ize random number generation.

SGN (X) Returns−1 if X is negative, 0 if X is 0, and 1 if X is positive.

SQR (X) Returns the square root of X.

MAX (list) Returns the highest value in the list of numeric expressions.

MIN (list) Returns the lowest value in the list of numeric expressions.

USRID Returns the user id number. This is calculated using the HP-UX
function tty slot(). The following program in C displays this
slot # for the terminal where you execute the program:

 main() {
 int ttyslot () ;
 printf (”ttyslot: %d\\n”,ttyslot());
 }

TASKID Returns the task id number.

CURKEY Returns the number of the most recently pressed softkey or the
value of an ONCONDITION interrupt if TIO is used.

Some functions are available for compatibility reasons, only. To get the syntax of
this functions,see section , Built-in Numeric Function, on page 3

NOTE: There is a built-in string function called REVISION$ (not to be confused with REVISION)
that returns the version of Eloquence currently running, as a seven-character string. For
example, A.06.00.

Built-in numeric functions usually consist of a function name followed by one
parameter. The parameter may be a number (as in line 10 below), a numeric vari-
able (line 20), or a numeric expression (line 30). Since the result of a numeric

140

Operators and Functions
Built-in Numeric Functions

function is always a single value, a numeric function can be used as an operand in
an expression (line 40) or as a parameter of a numeric function (line 50). Here are
some examples:

10 A=INT(1.6) A equals the integer value of 1.6 = 1.

20 B=ABS(A) B equals the absolute value of 1 = 1.

30 C=SQR (A+B) C equals the square root of (1 + 1) = 1.41421356237.
40 D=LGT(A)^2+LOG(A)^2

 D equals the sum of LGT(A) squared plus LOG(A) squared (0).

50 E=INT(SQR(10)) SQR(10) = 3.14; the integer value of 3.14 = 3.

60 Max=MAX(1,35,7) Max = the largest value in the list = 35.

70 R=PROUND(125.2,2) 125.2 rounded to the second power of ten = 100.

80 PI=DROUND(PI,4) PI rounded to four digits = 3.142.

The last three lines show built-in functions which allow more than one parameter.

Other built-in functions are available to manipulate strings, to return information
on file storage operations, and to control the format of program output. In addi-
tion, you may define your own functions as explained later in this chapter.

Trigonometric Statements and Functions

The trigonometric functions use one of three angular units: radians, degrees, or
gradients (grads). Radians are the default units (set at power-up or after the com-
puter is reset). To change the angular units, execute one of these statements:

DEG sets degees units. A degree is 1/360th of a circle.

GRAD sets grads units. A grad is 1/400th of a circle.

RAD resets radians units. There are 2(PI) radians in a circle.

The trigonometric functions available are:

ACS (X) returns the principal value of the arccosine of the numeric
expression X, which can range from -1 to +1.

ASN (X) returns the principal value of the arcsine o the numeric expres-
sion X, which can range from -1 to +1.

ATN (X) returns the principal value of the arctangent of the numeric
expression X.

141

Operators and Functions
Built-in Numeric Functions

COS (X) returns the cosine of the angle represented by the numeric
expression X.

SIN (X) returns the sine of the angle represented by the numeric expres-
sion X.

TAN (X) returns the tangent of the angle represented by the numeric
expression X.

Here are some examples of trigonometric operations:

 DEG
 FIXED5
 DISP SIN(60)
 .86603
 COS(45)
 .70711
 ASN(.5)
 30.00000
 ACS(.5)
 60.00000
 ATN(.5)
 26.56505

 RAD
 FIXED5
 DISP SIN(PI/6)
 .50000
 COS(PI/6)
 .86603
 TAN(PI/4)
 1.00000
 ASN(.5)
 .52360
 ACS(.5)
 1.04720
 ATN(.5)
 .46365

 GRAD
 FIXED5
 DISP SIN(-70)
 -.89101
 COS(-70)
 .45399
 TAN(50)
 1.00000
 ASN(.5)
 33.33333
 ACS(.5)
 66.66667
 ATN(.5)
 29.51672

142

Operators and Functions
Built-in Numeric Functions

NOTE: To use the SIN function you need to precede it with DISP otherwise it conflicts withspace
independent (SI) and causes an error message.

Random Numbers

A random number generator, the RND function, is provided for programs that per-
form simulations. Each time the RND function is called, a random number
between 0.0 and 1.0 is returned. The following program demonstrates the RND
function:

10 FIXED 12
20 FOR Line = 1 TO 10
30 PRINT RND,RND,RND,RND
40 NEXT Line
50 END

143

Operators and Functions
Built-In String Functions

Built-In String Functions

The built-in string functions available are:

CHR$ (X) Returns the ASCII character-equivalent of the numeric expres-
sion X MOD 256 (a number from 0 through 255). For example,
CHR$(65) = "A". ASCII decimal equivalents are listed in
page 391 .

ERRMSG$ (error
number) Returns error description of given error number. The error mes-

sages are located in the message catalog file eloq.cat which will
be located at the standard NLS path.

Example:

 DISP ERRMSG$(2)
 “Memory overflow”

Error handling:

ERRMSG$ will not bring a program error if either message or
message catalog could not be found, to avoid looping in the
error handler.

Instead it will return an error message which will contain the
error number and a descriptive text where ’#’ will replaced by
the error number parameter:

 (ERR#): Message catalog not found
(ERR#): Error message not found

GETENV$ (S$) Returns the value of environment variable.

MAPPNTR$
(printer) Returns printer mapping. This is necessary if you use TIO and

you want to configure the device using stty because PORT
number may be configured to any devicefile.

Return values:

NONEXISTENT if this printer is not available

INTERNAL if printer is 9 or 10 (and local printer avail-
able)

PIPE if printer is mapped to a pipe

144

Operators and Functions
Built-In String Functions

”/dev/” - if printer is mapped to a (device-)file

It may also be used to check for existing printers.

Sample program sequence:

 COMMAND “!stty 2400 icanon <”&MAPPNTR$(15)

This will configure device mapped to PRINTER/PORT 15 to
use icanon mode at 2400 baud.

MAPVOL$(Vol-
spec$) Returns hp-ux path of mapped volume name or device speci-

fier.

REVISION$ Returns Eloquence revision.

SYSID$ Returns the revision of the used operating system.

RPT$ (S$,X) Takes the string S$ and repeats it X times. If X = 0 a null string
is returned.

TRIM$ (S$) Returns a string which is equal to S$ with all leading and trail-
ing blanks stripped off.

VAL$ (X) Converts the value of the numeric expression X to its corre-
sponding string of ASCII digits. For example, VAL$ (65) =
"65".

LWC$ (S$) Returns a string with all characters converted to lowercase.

UPC$ (S$) Returns a string with all characters converted to uppercase.

TYPEOF$(X) Returns the name of the type of the given User Defined vari-
able.

A number, not a string, is returned by the following functions:

LEN (S$) Returns the number of ASCII characters in the string S$.

LEX (S$,T$) Compares the string S$ with the second string T$ and returns -1
if S$ is less than T$; 0 if S$ equals T$; 1 if S$ is greater than
T$.

NUM (S$) Returns a numeric value between 0 and 255 corresponding to
the first character of the string S$. For example, NUM ("A") =
65.

POS (S$,T$) Searches the string S$ for the first occurrence of the string T$.
Returns the starting position (index) if found; otherwise returns
0.

145

Operators and Functions
Built-In String Functions

SCAN (S$,T$) Searches the string S$ for the first occurrence of any single
character in the string T$. Returns the starting position (index)
if found; otherwise returns 0.

VAL (S$) Returns the numeric equivalent of the string S$, which must be
a string of ASCII digits. (S$ may include a decimal point.) For
example, VAL ("1") = 1. The argument may be any string that
begins with a valid number (integer or real). VAL will return
the value of this number and ignore any remainder of the string.
VAL ("1.2 ABC") will return the value 1.2; VAL ignores the
"ABC". If a string begins with anything other than an integer or
real,ERROR 32 will result.

Some functions are available for compatibility reasons, only. To get the syntax of
this functions, see section , Built-in String Function, on page 4

Most of the string functions are used to manipulate and create strings. For exam-
ple:

10 String$=”REPEAT”
20 PRINT RPT$(String$,10)
30 T$=” PART NO. ”
40 PRINT T$;”*”;TRIM$(T$);”*”

REPEATREPEATREPEATREPEATREPEATREPEATREPEATREPEATREPEATREPEAT
PART NO. *PART NO.*

no leading or trailing blanks here

50 S$=”STRING”
60 PRINT S$,LEN(S$)
70 S$[LEN(S$)+1]=”FUNCTIONS ”
80 PRINT RPT$(LWC$(S$),4)

STRING 6
stringfunctionsstringfunctionsstringfunctionsstringfunctions

90 T$=”TELEVISION”
100 V$=”VISION”
110 PRINT T$,POS(T$,V$)

TELEVISION 5

120 T$[POS(T$,”V”)]=UPC$(”phones”)
130 PRINT T$
140 Invent$=V$T$[POS(T$,”P”)]
150 PRINT Invent$,LWC$(Invent$)
160 END

TELEPHONES
VISIONPHONES visionphones

VAL$ and VAL are used to go back and forth between strings of ASCII digits
("1234") and numeric values. VAL$ results are returned in the current output for-
mat (FIXED, FLOAT or STANDARD). For example:

146

Operators and Functions
Built-In String Functions

10 DIM Pay$[50]
20 FIXED 2
30 Pay$=”BASE: 295.50 TAX: 125.30”
40 Takehome=VAL(Pay$[7,12]) −VAL(Pay$[19,24])
50 PRINT Pay$, ”BUT YOU GET:”;Takehome
60 Pay$[25]=” TAKEHOME: ”VAL$(Takehome)
70 PRINT LWC$(Pay$)
80 END

produces

BASE: 295.50 TAX: 125.30 BUT YOU GET: 170.20
base: 295.50 tax: 125.30 takehome: 170.20

NUM and CHR$ are used to go back and forth between an ASCII character and
its ASCII index. For example, this program tests the numeric value of each char-
acter in the string Test$ to see if it contains an integer:

10 FOR I = 1 to LEN(Test$)
20 IF NUM(Test$[I]) < 48 OR NUM(Test$[I]) > 57 THEN
30 PRINT VAL(Test$);” is not an integer”
50 END IF
50 NEXT I
60 END

Here is a simple program which displays each standard ASCII character and its
decimal ASCII code.

110 FOR Char=32 TO 127
120 DISP Char;CHR$(Char);SPA(3);
130 NEXT Char
140 END

RUN
 32 33 ! 34 “ 35 # 36 $ 37 % 38 & 39 ’ 40 (41)
 42 * 43 + 44 , 45 - 46 . 47 / 48 0 49 1 50 2 51 3
 52 4 53 5 54 6 55 7 56 8 57 9 58 : 59 ; 60 < 61 =
 62 > 63 ? 64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G
 72 H 73 I 74 J 75 K 76 L 77 M 78 N 79 O 80 P 81 Q
 82 R 83 S 84 T 85 U 86 V 87 W 88 X 89 Y 90 Z 91 [
 92 \ 93] 94 ^ 95 _ 96 97 a 98 b 99 c 100 d 101 e
 102 f 103 g 104 h 105 i 106 j 107 k 108 l 109 m 110 n 111 o
 112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w 120 x 121 y
 122 z 123 { 124 | 125 } 126 ~ 127

Outputting decimal character values below 32 sends ASCII control codes such as
FF (form feed) and CR (carriage return). Sending character values above 127
enables program control of display enhancements and alternate characters on the
display. Refer to page 249 for more details.

147

Operators and Functions
Built-In String Functions

The SYSID$ Function

The SYSID$ function is a user-definable system identifier. Using the capability of
HP 9000s to communicate asynchronously with each other, a user can configure
one system’s terminal to act as a terminal on another. In a more complex network,
the user on the first system may be linked to the second system, then to the third
system, and so on. In order to determine which system the user is on, use the sys-
tem identifier function—SYSID$.

The syntax for the SYSID$ function is as follows:

 SYSID$

The system identifier will return a string of max. 20 characters in length.

NOTE: The Eloquence SYSID$ function returns the same information as the HP-UX uname
command. In the HP-UX environment the term “hostname” is used instead of “system
identifier”. The HP-UX command to display the hostname is as follows:

uname -n

148

Operators and Functions
Defining a Function

Defining a Function

When a numeric or string operation has to be evaluated several times, it is conve-
nient to define it as a function. This is done using the DEF FN statement, which
specifies a user-defined function and returns a single value as the value of the
function. The simplest form is the single-line function, which can be used to
define a numeric or string function. To define a numeric single-line function, use
this syntax:

 DEF FN function name [(formal parameter list)] = numeric expression

To define a string single-line function:

 DEF FN function name$ [(formal parameter list)] = string expression

Thefunction name must be a valid name (as defined in page 73).

To use the defined function, use the FN statement.

Syntax of the FN statement for anumeric function is as follows:

 FN function name [(pass parameter list)]

Syntax for the FN statement for astring function is as follows:

 FN function name$ [(pass parameter list)]

The values of the pass parameters are substituted for the formal parameters and
the expression is evaluated. Its value is then returned as the value for the referenc-
ing syntax. page 177 provides a detailed explanation of parameters and also cov-
ers multi-line functions.

To show the use of single-line functions, consider the following program frag-
ment:

30 A=A+(SQR(A) −PI/20)
.
.
.

80 B=B+(SQR(B) −PI/20)
.
.
.

200 C=C+(SQR(C) −PI/20)

By defining:

20 DEF FNNum(X)=X+(SQR(X) −PI/20)
function name formal parameter

149

Operators and Functions
Defining a Function

lines 30, 80, and 200 can be simplified:

30 A=FNNum(A)
. passed parameter
.
.
.

80 B=FNNum(B)
. passed parameter
.
.
.

200 C=FNNum(C)
. passed parameter

Recursion is not allowed in single line functions.

300 DEF FNBad(X,Y,Z)=X+X+FNBad(A,B,C)*3
310 PRINT FNBad(A,B,C)
320 END

This would causeERROR 48 IN LINE 310 . FNBad must not reference itself
either directly or indirectly via another function (in this case, FNBad calls
FNWorse which then calls FNBad).

Single-line functions are local to the program segment in which they are defined
(see section 7, Subprograms, on page 177 for an explanation of program seg-
ments.) For example:

10 DEF FNA(X)=PI*X
20 INPUT Z
30 Y=FNA(Z)
40 PRINT Y
50 CALL Set
60 END
70 SUB Set
80 INPUT I
90 J=FNA(I)
100 PRINT J
110 SUBEND

Lines 70 through 110 represent a subprogram.

When run,ERROR 7 IN LINE 90 (SUB Set) would occur since FNA is not
defined in subprogram Set.

Multiple-line function subprograms can also be used to define a function. (see sec-
tion , Multiple-Line Function Subprograms, on page 184)

150

Operators and Functions
Defining a Function

151

6

 Branching and Subroutines

Normal program execution is in sequential order from the lowest numbered
line to the highest numbered line. Branching alters this process by transfer-
ring control to a statement which is out of the sequential flow. Branching is

152

Branching and Subroutines

just one method of altering the normal flow of program execution. This chapter covers
conditional and unconditional branching, looping, subroutines and branching using soft-
keys.

The following statements, functions, and commands are discussed in this chapter:

GOTO Branches (unconditionally) to a specified program line.

ON GOTO Branches to one of a list of specified program lines.

IF THEN Branches or executes a statement upon a stated condition.

FOR Defines the beginning of a FOR-NEXT loop.

NEXT Terminates a FOR-NEXT loop.

GOSUB Branches (unconditionally) to a subroutine.

RETURN Terminates a subroutine and returns control to the main program.

ON GOSUB Branches to one of a list of specified subroutines.

SOFTKEYSET ON/OFF Statement to switch softkey set indicator on or off.

ON KEY # Branches to a specified program sequence when the specified special
function key is pressed.

OFF KEY # Disables any previous ON KEY # statement for the corresponding key
number.

ON ERROR Branches to a specified program sequence when an error occurs.

OFF ERROR Cancels any previous ON ERROR.

DISABLE Prevents ON KEY # declaratives from interrupting program execu-
tion.

ENABLE Reactivates ON KEY # declaratives.

CURKEY Returns the value of the most recent interrupting condition, including
softkeys, timed delay interrupts, and terminal input/output (TIO) inter-
rupts.

ON HALT Branches to a specified program sequence whenBREAK is pressed.

OFF HALT Cancels any previous ON HALT.

INDENT Changes all program line indentation.

ON SIGNAL Branches to a specified program sequence when SIGUSR1 signal is
caught. For more detailed description of this and the two following
functions,see chapter 14.

OFF SIGNAL Cancel previous ON SIGNAL, see chapter 14.

SEND SIGNAL Send SIGUSR1 signal to specified taskid, see chapter 14.

ON KEYBD Arbitrary keys can be used as function keys.

OFF KEYBD Cancel previous ON KEYBD.

Structured programming techniques improve the programming task via better program
organization. A set of enhanced Eloquence statements is available with the Eloquence
operating system to improve program readability.

IF THEN ELSE States one of two statements to be executed depending upon the result

153

Branching and Subroutines

of a conditional expression.

WHILE
END WHILE Repeats execution of a block of statements while a conditional expres-

sion remains true.

LOOP
END LOOP Continually repeats a block of statements until a branch out occurs via

an EXIT IF statement.

REPEAT
UNTIL Repeats execution of a block of statements until a conditional expres-

sion becomes true.

SELECT
END SELECT Allows branching to any of a set of CASE statements depending on the

value of a conditional expression.

154

Branching and Subroutines
Unconditional Branching

Unconditional Branching

The GOTO Statement

The GOTO statement provides unconditional branching by transferring control to a spec-
ified line. If the specified line is not an executable statement, control is transferred to the
first executable statement following that line.

 GOTO line id

Here is an example using GOTO to branch to both higher-numbered and lower-numbered
lines:

10 Name$=”Gwendolyn”
20 GOTO Print
30 INPUT ”NEW NAME?”;Name$
40 GOTO Compute
50 Print: PRINT ”NAME IS:”;Name$
60 GOTO 30
70 Compute: ! Continue program.

.

.

.

NOTE: A GOTO with line number is not recommened and doesn’t work in the IDE.

155

Branching and Subroutines
Unconditional Branching

The ON GOTO Statement

The ONGOTO (computed GOTO) statement allows control to be transferred to one of a
list of statements based on the value of a numeric expression.

 ON numeric expression GOTO line id list

Thenumeric expression is evaluated and rounded to an integer. A value of 1 causes con-
trol to be transferred to the first statement specified in the list, a value of 2 causes control
to be transferred to the second statement specified in the list, and so on. For example:

10 INPUT ”IS ITEM OVERSTOCKED(1), OK(2),OR OUT OF STOCK(3)?”;Status
20 ON Status GOTO 30,Ok,Reorder
30 Over: ! Overstock routine.

.

.

.
70 STOP
80 Ok: !
90 PRINT ”CHECK ITEM NEXT TIME.”
100 STOP
110 Reorder: ! Reorder routine.

.

.

.

If the value of thenumeric expression is less than 1 or greater than the number of line ids
listed,ERROR 19 (improper value) occurs. For example, when line 130 in the next
sequence is executed for the fourth time, the value of I exceeds the number of line ids in
the list.

120 I=1
130 ON I GOTO Print,Print,Print
140 Print: PRINT ”I=”;I
150 I=I+1
160 GOTO 130
170 END

I= 1
I= 2
I= 3
ERROR 19 IN LINE 130

156

Branching and Subroutines
Conditional Branching

Conditional Branching

The IF THEN Statement

The IF THEN statement is used to provide branching which is dependent on a specified
condition. Syntax for this statement is as follows:

 IF numeric expression THEN line id

NOTE: Working with line number is not recommened and doesn’t work in the IDE.

If the numeric expression has a value other than 0, it is considered true and branching
occurs to the specifiedline id. If its value is 0 (false), execution continues with the line
following the IF THEN statement. For example:

10 INPUT A
20 IF A THEN 50
30 PRINT ”A=0”
40 GOTO 10
50 PRINT ”A=”;A
60 END

The IF THEN statement is used most often with relational operators. For example:

100 INPUT ”HOURS WORKED?”;Hours
110 IF Hours>40 THEN Overtime
120 DISP ”NO OVERTIME ENTERED.”
130 GOTO 100
140 Overtime: Over=Hours-40
150 PRINT ”OVERTIME PAY =”;Over*Pay*1.5
160 GOTO 100

Another form of the IF THEN statement provides conditional execution of a statement
without branching. Syntax is as follows:

 IF numeric expression THEN statement

When the value of thenumeric expression is not 0 (true), thestatement is executed. When
the value of thenumeric expression is 0 (false), execution continues with the following
line. For example:

200 READ X,Y
210 IF X=Y THEN PRINT ”X=Y”
220 PRINT ”X=”;X,”Y=”;Y

A special expression exists for User Defined Types.

 IF Instance_name IS A Type_name THEN

With this expression it is possible to find out if the given Instance has has been derived
from the given Type. If the given Instance and the given Type have been derived from
the same Base_type, then the expression is true, too.

Example:

IF My_car IS A Car THEN CALL Write_car (STRUCT My_car)

All executable Eloquence statements are allowed following THEN.

157

Branching and Subroutines
Conditional Branching

The following statements are not allowed after THEN since they aredeclaratory state-
ments, notexecutable statements:

COM INTEGER
DATA OPTION BASE
DIM REAL
DEF FN REM
FN END SHORT
END SUB
IMAGE SUBEND

Here is another example use of IF THEN, which branches to one of many routines
depending on the input response.

10 INPUT ”DO YOU WISH DAILY, WEEKLY, OR MONTHLY REPORTS?”;Report$
20 IF UPC$(Report$[1,1])=”D” THEN Daily
30 IF UPC$(Report$[1,1])=”W” THEN Weekly
40 IF UPC$(Report$[1,1])=”M” THEN Monthly
50 DISP ”INCORRECT ENTRY”
60 WAIT 2000
70 GOTO 10
80 Daily: ! Print daily report.

.

.

.
130 STOP
140 Weekly: ! Print weekly report.

.

.

.
220 STOP
230 Monthly: ! Print monthly report.

.

.

.
300 Continue: ! Continue program.

.

.

158

Branching and Subroutines
Looping

Looping

The FOR and NEXT Statements

Repeatedly executing a series of statements is known as looping. The FOR and NEXT
statements are used to enclose a series of statements in a FOR-NEXT loop, allowing
them to be repeated a specified number of times. The sequence is as follows:

 FORloop counter = initial value TO final value [STEP increment value]

 .
 .
 .
 NEXT

The FOR statement defines the beginning of the loop and specifies the number of times
the loop is to be executed. Theloop counter must be a simple numeric variable.

The initial , final, andincrement values can be any numeric expression. If theincrement
value is not specified, the default value is 1, causing the value to be incremented by 1
each time the loop is repeated.

Here is a simple example:

 10 FOR I=1 TO 5
20 PRINT I
30 NEXT I
40 PRINT ”LOOP DONE, I=”;I
50 END

1
2
3
4
5

LOOP DONE, I=6

The variable I is established as theloop counter and is set to 1 when the FOR statement is
executed. The FOR-NEXT loop is executed 5 times—when I = 1, 2, 3, 4 and 5. Each
time the NEXT statement is executed, the value of I is incremented by 1, the default
increment value. When the value of I exceeds thefinal value (when I = 6) the loop is fin-
ished and execution continues with the statement following NEXT.

The advantages of using FOR-NEXT looping instead of an IFTHEN statement are shown
in the following examples, where the numbers 1 through 1000 are printed in succession.

IF THEN FOR-NEXT

10 Increment = 1 100 FOR Increment=1 TO 1000
20 Label:PRINT Incremen 110 PRINT Increment
30 Increment=Increment+1 120 NEXT Increment
40 IF Increment<=1000 THEN Label 130 BEEP
50 BEEP 140 END
60 END

The initial , final andincrement values are calculated upon entry into the loop. These cal-
culated values are used throughout execution of the loop, and any subsequent alterations
to these values will not affect the number of times the loop is repeated.

159

Branching and Subroutines
Looping

Here is a simple example:

10 A=3
20 INPUT B
30 PRINT ”X”,”A”,”B”
40 FOR X=A TO A*B STEP B-2
50 A=A+X
60 B=B-1
70 PRINT X,A,B
80 NEXT X
90 END

If 4 is input for the value of B, the loop is repeated five times and the output is:

X A B

3 6 3
5 11 2
7 18 1
9 27 0
11 38 -1

The following examples show that differing FOR statements can perform the same task.
In each example, the FOR-NEXT loop is executed ten times. Notice the value of theloop
counter while the loop is executing and after it is complete. An often overlooked aspect
of FOR-NEXT looping is that the actual value of the counter when the loop is complete
does not equal the final value.

10 FOR I=1 TO 10 RUN
20 PRINT I 1
30 NEXT I 2
40 PRINT ”I=”;I 3
50 END 4

5
6
7
8
9
10
I=11

100 FOR J=10 TO 1 STEP -1 RUN100
110 PRINT J 10
120 NEXT J 9
130 PRINT ”J=”;J 8
140 END 7

6
5
4
3
2
1
J=0

200 Start=10 RUN200
210 Finish=40 10
220 FOR I=Start TO Finish STEP 3.1 13.1
230 PRINT I 16.2
240 NEXT I 19.3
250 PRINT ”I=”;I 22.4
260 END 25.5

28.6
31.7
34.8
37.9
I=41

160

Branching and Subroutines
Looping

300 FOR Fraction=.1 TO 1 STEP .1 RUN300
310 PRINT Fraction .1
320 NEXT Fraction .2
330 PRINT ”Fraction=”;Fraction .3
340 END .4

.5

.6

.7

.8

.9
1
Fraction=1.1

400 FOR A=1 TO 19 STEP 2 RUN400
410 PRINT A 1
420 NEXT A 3
430 PRINT ”A=”;A 5
440 END 7

9
11
13
15
17
19
A=21

If the initial value is greater than thefinal value when the loop is entered, theloop
counter is set to theinitial value and the loop is skipped. For example:

10 PRINT ”START, A=”;A
20 FOR A=5 TO 1
30 PRINT A
40 NEXT A
50 PRINT ”DONE, A=”;A
60 END

START, A=0
DONE, A=5

Nesting FOR-NEXT Loops

When one FOR-NEXT loop is contained entirely within another, the inner loop is said to
be nested. The next example illustrates assigning values to an array using a nested FOR-
NEXT loop.

10 OPTION BASE 1
20 DIM Array(4,3)
30 FOR L1=1 TO 4
40 FOR L2=1 TO 3
50 Array(L1,L2)=L1+L2
60 NEXT L2
70 NEXT L1
80 PRINT Array(*)
90 END

2 3 4

3 4 5

4 5 6

5 6 7

161

Branching and Subroutines
Looping

One FOR-NEXT loop cannot overlap another. For instance:

Correct Nesting Incorrect Nesting

10 FOR I=1 TO 10 100 FOR I=1 TO 10
20 FOR J=1 TO 5 110 FOR J=1 TO 5
30 PRINT I,J 120 PRINT I,J
40 NEXT J 130 NEXT I
50 NEXT I 140 NEXT J
60 END 150 END

In the incorrect example, the I loop is activated before the J loop is activated. The J loop
is cancelled whenNEXT I is executed because it is an inner loop. When the I loop is
completed andNEXT J is accessed,ERROR 6 IN LINE 140 is displayed. This is
because the J loop was cancelled and was not reactivated after the last I loop.

When nesting FOR-NEXT loops, do not use the same loop counter variable more than
once; therefore, a FOR I loop cannot be nested within another FOR I loop.

FOR-NEXT Loop Considerations

Execution of FOR-NEXT loops should always start with the FOR statement. Branching
into the middle of a loop will produceERROR 6 if NEXT is executed before a corre-
sponding FOR.

Execution of loops normally end with the NEXT statement. It is permissible to transfer
control out of the loop by a statement within the loop. After an exit is made through this
method, the current value of the counter is retained and is available for later use in the
program. In any case, it is permissible to re-enter the loop via the FOR statement, thereby
reinitializing the loop counter.

For example, here is a routine which checks each character of each string in a 100-string
array Page$. The string is printed unless an * is found (line 30). If an * is found, control
exits the inner loop and re-enters the outer loop to avoid printing the string.

10 FOR Line=1 TO 100
20 FOR Char=1 TO 50
30 IF Page$(Line)[Char,Char]=”*” THEN 60
40 NEXT Char
50 PRINT Page$(Line)
60 NEXT Line
70 END

162

Branching and Subroutines
Subroutines

Subroutines

The same sequence of statements may be executed often within a program. A subroutine
allows the group of statements to occur only once and yet be accessed from different
places in a program segment.

The GOSUB Statement

The GOSUB statement transfers control to a subroutine which begins at a specified state-
ment.

 GOSUB line id

A subroutine ends, logically, withRETURN which transfers control back to the statement
immediately following the GOSUB statement.

The following example shows the use of GOSUB and RETURN:

10 X=5
20 Y=3
30 GOSUB Sub
40 X=X+Z
50 Y=Y/2
60 GOSUB Sub
70 Y=Y^3
80 X=0
90 GOTO Continue
100 Sub:! Print value of Z. *
110 Z=X+Y * Subroutine
120 PRINT Z *
130 RETURN *

.

.
200 Continue:!

.

.

Subroutines may be nested; this is, a second subroutine can be entered before the
RETURN of the first is executed. For example:

1000 INPUT X,Y
1010 GOSUB Sub1

.

.
1090 STOP
1100 Sub1:!
1110 PRINT X,Y
1120 IF XY THEN GOSUB Sub2

.

.
1190 RETURN
1200 Sub2:!
1210 PRINT ”XY”

.

.
1290 RETURN

The subroutine Sub2 is nested within subroutine Sub1.

Subroutines can be nested as deeply as available memory allows. When each RETURN
is executed, control returns to the previously entered subroutine.

163

Branching and Subroutines
Subroutines

The ON GOSUB Statement

The ON GOSUB (computed GOSUB) statement accesses one of many subroutines,
based on the value of a numeric expression.

 ON numeric expression GOSUB line id list

Thenumeric expression is evaluated and rounded to an integer. A value of 1 causes the
subroutine at the first line id in the list to be accessed, and so on. For example:

10 Main: ! Setup report cycle.
20 INPUT ”DO YOU WISH DAILY(1) OR WEEKLY(2) REPORTS?”;Cycle
30 ON Cycle GOSUB Daily, Weekly
40 INPUT ”SHOULD REPORTS BE DISPLAYED(1), PRINTED(2),OR OTHER(3)?”;O
utput
50 ON Output GOSUB Display,Print,Other

.

.
110 STOP
120 Daily: ! Setup daily schedule.

.

.

.
160 RETURN
170 Weekly: ! Setup weekly schedule.

.

.

.
220 RETURN
230 Display: PRINTER IS 8
240 RETURN
250 Print: PRINTER IS 0
260 RETURN
270 Other: ! Specify another output device.

.

.

.

The main program begins with a series of prompts which the operator answers while set-
ting up a report cycle. Each ON GOSUB branches the program to the appropriate subrou-
tine—Daily, Weekly, Display, Print, or Other.

If the value of thenumeric expression is less than one or greater than the number of line
ids in the list,ERROR 19 occurs.

164

Branching and Subroutines
Branching Using Softkeys

Branching Using Softkeys

ON KEY # Statement

Within Eloquence there are 24 softkeys. These softkeys are set up in three sets of eight.
The softkeys can be used to interrupt a running program and cause branching. This inter-
rupt capability is declared with an ON KEY # statement which specifies the branching
operation to occur when the corresponding softkey is pressed.

NOTE: Softkeys can’t be used together with the graphical user interface and so it is not supported on
Windows platforms.

 ON KEY# key number, [#key number 2 , ... , # key number n] [:"label"]

NOTE: Although a subprogram may be CALLed using the ON KEY # statement, no parameters may be
passed.

Thekey number is an integer expression from 1 through 24. Multiple keys can be defined
within the same ON KEY # statement.

When a key is pressed and an ON KEY # has been declared for it, the specified branch is
made after the current line has been executed. The optionallabel is a string expression;
the first 18 characters of it appear above the defined softkeys (keys 1 through 8), so label-
ling the softkeys on the screen.

ON KEY # statements which specify GOTO or GOSUB are active only in the program
segment in which they were declared.

NOTE: The eighteenth character of the last function key in each of the three sets (8, 16, and 24) cannot be
displayed on some terminal types (for example, the HP 700/92). Therefore, avoid assigning an
eighteen character long label to softkeys 8, 16, and 24.

As an example, here is a program sequence which defines some of the softkeys, allowing
the operator to select the desired routine:

10 OFF KEY #3,4,5,6,7
20 ON KEY #1,#9,#17:”START APPLICATION” GOTO Init
30 ON KEY #2:”ENTER CONFIG” GOTO Config_applic
40 ON KEY #8:”EXIT” GOTO Halt1
50 PRINT PAGE,LIN(10),SPA(20),”APPLICATION STARTUP”
60 PRINT SPA(20), ”SELECT OPERATION BELOW”
70 WAIT ! Wait for softkey.
80 Init: ! Start application.
90 ON KEY #1,#9,#17:”ACCOUNTING” GOTO Key1
100 ON KEY #2:”ORDERING” GOTO Key2
110 ON KEY #7:”RESTART” GOTO 10
120 PRINT PAGE,LIN(10),SPA(20),”SELECT MODULE TO BE

STARTED BELOW”
130 WAIT ! Wait for softkey.
140 Config_applic: ! Enter application parameter.

.

.

.

GOTO line id

GOSUB line id

CALL subprogram

165

Branching and Subroutines
Branching Using Softkeys

Line 10 cancels any previous ON KEY # definitions for keys 3 through 7. Lines 20
through 40 define the keys for initial selection. The program then displays instructions
and waits at line 70 until a defined softkey is pressed.

The Init routine, lines 80 through 130, show how softkey 1 and softkey 2 are redefined
and how softkey 7 is defined to restart the program. The previous definition for softkey 8
remains in effect here. Another WAIT statement holds program execution until a defined
softkey is pressed.

The OFF KEY # Statement

The ON KEY # declarative is in effect for a key until another declarative for the same
key or a SCRATCH, STOP, END, RUN, or OFF KEY # statement is executed:

 OFF KEY # [key number list]

Omitting key numbers causes all ON KEY # definitions to be cancelled. See line 20 in
the preceding example program.

The DISABLE Statement

The DISABLE statement prevents :ON KEY # declaratives from interrupting program
execution.

 DISABLE

The ON KEY # declaratives are still active; pressing each softkey causes the interrupt to
be logged for execution when the declaratives are re-enabled.

The ENABLE Statement

To re-enable ON KEY # declaratives to interrupt program execution, execute the
ENABLE statement:

 ENABLE

The CURKEY Function

The CURKEY function returns the value of the most recent interrupting condition,
including softkeys, timed delay interrupts, and terminal input/output (TIO) interrupts:

The possible values returned by CURKEY, and their meaning, are given here:

0 No interrupt.
1 - 24 Softkeys 1 through 24.
25 - 53 TIO interrupts: (port number * 3)+25 = ON INPUT number
54 ON DELAY
55 ON KEYBD
56 - 74 Unused.

When an ON KEY #GOTO causes a branch, any previous value for CURKEY is lost.
When ON KEY #GOSUB or ON KEY #CALL causes a branch, any previous CURKEY
value is retained on entry to the subroutine or subprogram. While in the subroutine or
subprogram, CURKEY returns the number of the key used to call the routine. The previ-
ous number is returned when the routine is exited.

The CURKEY value is cleared by any SCRATCH operation and by pre-run initialization
(RUN, GET, etc.).

166

Branching and Subroutines
Branching Using Softkeys

Here is a simple program which defines the softkeys 1 through 8 and then displays each
softkey number pressed.

10 FOR Key=1 TO 8
11 A$=VAL$(Key)
20 ON KEY #Key:A$ GOSUB 50
30 NEXT Key
40 WAIT
50 DISP ”KEY”;CURKEY;”PRESSED”
60 RETURN

LASTKEY

The LASTKEY keyword returns the key number of the last key that caused an ON
KEYBD interrupt.

SOFTKEY ON/OFF Statement

The SOFTKEYSET ON or SOFTKEYSET OFF statements will switch the softkey set
indicator on or off. The default state is off. The softkey indicator appears at the right mar-
gin above the softkey labels.

 SOFTKEYSET ON

 SOFTKEY SET OFF

U1 - U3 user keys (ON KEY #) S1 - S2 system

The SOFTKEYSET statement will switch softkeys to the level given by the SOFTKEY-
SET expression:

1 program keys #1 - #8

2 program keys #9 - 16#

3 program keys #17 - #24

-1 system keys set #1

-2 system keys set #2

-3 system keys set #3

167

Branching and Subroutines
Error Testing and Recovery

Error Testing and Recovery

Run-time errors are those which occur when a program is running. Dividing by 0 is an
example. These errors normally halt execution. Through use of the ON ERROR state-
ment, run-time errors need not abort the program. Execution may continue with specified
code following the execution of the line in which the error occurred. The ON ERROR
statement causes a branch which takes place after any error.

* Parameters cannot be passed.

 * Parameter can not be passed

The ON ERROR statement declares what should happen if an error occurs. It need be
executed only once in each program segment to establish the ON ERROR condition.
Execution of another ON ERROR statement cancels the previous one.

When a run-time error occurs and the ON ERROR condition has been established, execu-
tion is transferred to the specified line. Then the ERRN and ERRL functions discussed
next can be tested, and either error recovery procedures or DISP ERRM$ can be exe-
cuted. The error is ignored if the statement referenced by a GOSUB is a RETURN state-
ment; execution continues with the line after the one in which the error occurred.

If the error-recovery routine itself contains an error, the program may possibly run in an
endless loop. This can be stopped by pressingBREAK or CTRL Y.

If the ON ERROR statement specifies a GOSUB or CALL, computer priority is set at the
highest level until the routine has been completed. The routine can be interrupted only by
an ON END or another ON ERROR interrupt. (ON END is described in page 195 .) A
routine accessed with GOTO can be interrupted because system priority is not changed.

The following string and numeric functions return information related to the last error
trapped with ON ERROR:

ERRL The error line function returns the line number in which the most
recent program execution error occurred.

ERRN The error number function returns the number of the most recent pro-
gram execution error.

ERRM$ The error message string returns the most recent program execution
error message.

ERRMSG$(ERRN) The error message, which belongs to the error number, is read from
the message catalog and will be displayed.

ON ERROR is disabled with the OFF ERROR statement:

 OFF ERROR

ON ERROR

GOTO line id

GOSUB line id

CALL subprogram name*

168

Branching and Subroutines
Error Testing and Recovery

The following program sequence shows how ON ERROR can be used to detect errors
and display an appropriate message:

10 OPTION BASE 1
20 DIM A(50)
30 ON ERROR GOTO Recovery1
40 Print: INPUT ”Enter file name:”,F$
50 ASSIGN #1 TO ”F$”
60 FOR R=1 TO 50
70 PRINT #1,R;A(R)
80 NEXT R
90 PRINT ”DATA PRINTED ON FILE.”
100 GOTO Read
110 Recovery1: ! Check for errors 53 and 56.
120 IF ERRN=53 THEN E53
130 IF ERRN=56 THEN E56
140 GOTO Exit
150 E53: PRINT PAGE;”IMPROPER FILE NAME - PRESS <RETURN> TO CONTINUE.”
160 INPUT
170 GOTO Print
180 E56: PRINT PAGE;”FILE NAME IS UNDEFINED -

PRESS <RETURN> TO CONTINUE.”
190 INPUT
200 GOTO Print
210 Exit: PRINT ”ERRM$” ! Print error number and line.
220 STOP
230 Read: ! Continue program.

.

.

.

Line 30 activates an ON ERROR condition which will branch the program to the
Recovery1 routine if an error occurs. The Print routine prints data elements of array A
into sequential records of a data file. If any error occurs here, the program would branch
to Recovery1, rather than printDATA PRINTED ON FILE and continue at the Read rou-
tine.

The Read routine begins by deactivating the first ON ERROR routine and activating a
new one.

The Recovery1 routine checks for errors 53 and 56. The routine responds to errors 53 and
56 with a displayed message and then returns to the Print routine where the operator can
correct the error.

Notice that if any error but 53 or 56 occurs while Recovery1 is active, the Exit routine
first displays ERRM$, containing the error number and line, and then stops.

169

Branching and Subroutines
The ON HALT Statement

The ON HALT Statement

The ON HALT statement sets up a branching condition which will occur if theBREAK
key is pressed.

* Parameters cannot be passed between calling program and subprogram.

The branch occurs immediately after the current program line is executed.

Here is an example sequence which checks for theBREAK key and branches to a routine
to store the contents of an array in a data file before stopping the program:

10 ON HALT GOTO Stop
.
.

240 STOP
250 Stop: ! Save data exit program.
260 ASSIGN #1 TO ”SaveAray”
270 PRINT #1;Array(*)
280 DISP LIN(10);”PROGRAM HALTED”
290 END

The ON HALT condition is cancelled after SCRATCH, STOP, END or RUN. The condi-
tion is only active while the program is running after ON HALT is executed and during
an INPUT state, but it is temporarily deactivated during a PAUSE.

To cancel any previous ON HALT condition, use the OFF HALT statement:

 OFF HALT

ON HALT

GOTO line id

GOSUB line id

CALL subprogram name*

170

Branching and Subroutines
The KEYBD function

The KEYBD function

NOTE: The KEYBD function is not available when working with the graphical user interface and so it is
not supported on Windows platforms.

ON KEYBD

The ON KEYBD statement makes it possible to use arbitrary keys like functions keys.

Syntax:

 ON KEYBD #n[,#n...][,priority] {GOTO|GOSUB|CALL} target

NOTE: Key numbers are defined by curses and returned by the KBCODE keyword. You can't catch the
break key (key number 0).
There is a maximum of 32 active ON KEYBD in one program segment
An ON KEYBD statement overrides any default sense of the key. Catching an important
key (like carriage return) may result in a unusable keyboard within Eloquence

NOTE: A lot of special keys makes it hard to remember for the user, which keys are active or what keys
result in what function. It's most likely a bad idea to catch any regular characters or control
characters. If you catch some special keys (for example next line), the program reaction should
be closely implied by the key.

OFF KEYBD

The OFF KEYBD# removes the interrupt handling for the specified key or all keys, if no
key number has been specified.

Syntax:

 OFF KEYBD #[n [,n . . .]]

171

Branching and Subroutines
Structured Programming

Structured Programming

Structured programming techniques improve the programming task via better program
organization.

Structured IF THEN ELSE

The structured IF statement allows program execution to resume at one of two points
depending on the result of a test expression. The syntax for the structured IF is as fol-
lows:

 IF conditional expression THEN
 (statements)
 .
 .
 .
 ELSE
 (statements)
 .
 .
 .
 END IF

The ELSE statement is optional. If left out and the conditional expression is false, execu-
tion is passed to the statement after END IF. If a branch occurs into the statements imme-
diately after IF, program execution continues after the END IF when the ELSE is
encountered. When an END IF is required but cannot be found, an error occurs.

Here is an example sequence from a text processing program. It checks the first character
of string Line$. If it contains a period, the statements immediately following IFTHEN
determine the exact string and branch to perform the appropriate function. If the first
character is not a period, the ELSE statements are executed.

200 IF Line$[1,1]=”.” THEN ! Check for command line.
210 IF Line$[1,3]=”.BR” THEN Break
220 IF Line$[1,3]=”.PA” THEN Page
230 IF Line$[1,3]=”.AP” THEN Append
240 ELSE
250 PRINT Line$! Print text line.
260 Printpos=Printpos+1
270 END IF

 .
.

 .

172

Branching and Subroutines
Structured Programming

The WHILE Block

The WHILE . . . END WHILE statements allow repeated execution of a series of state-
ments while a conditional expression remains true. This condition is evaluated at the
beginning of the loop. If the expression is initially false, the loop is bypassed without
ever being executed.

The syntax for the block is as follows:

 WHILE conditional expression
 (statements)
 .
 .
 .
 END WHILE

If control is transferred into the loop via GOTO or other non-structured construct, an
error results when the END WHILE is encountered. If an END WHILE cannot be found
when required, an error occurs.

Here is a sequence which reads and prints numbers in successive records of a disk file.
Control exits the block when the TYP function returns 3, indicating that the end of file is
reached.

10 ASSIGN #1 TO ”Parts, SYSTEM”
20 WHILE TYP(1)3 !Exit at end of file.
30 READ #1:Part$
40 PRINT Part$
50 END WHILE
60 END

The LOOP Block

The LOOP block allows repeated execution of a series of statements until an explicit
request is made to exit. The statements between LOOP and END LOOP are executed
until an EXIT IF statement terminates the loop. The syntax for the block is as follows:

 LOOP
 (statements)
 .
 .
 .
 END LOOP

The loop may be exited only by an EXIT IF statement.

 EXIT IF conditional expression

If the condition is true, the loop is exited. If control is transferred into the loop via GOTO
or another non-structured construct, an error results when the END LOOP is encoun-
tered.

Note in the next example that EXIT IF exits the inner-most structured block. Other struc-
tured blocks active within LOOP (for example, REPEATs, WHILEs, or FORs) are deac-
tivated by removal from the system stack.

10 DIM Ltr$[1],Char$[1]
20 INTEGER Xpos,Badguess,Goodguess
30 DATA 31,T,33,E,35,L,37,O,40,B,42,O,43,C
40 DISP ” Guess the statement by entering one letter at a time:”,LIN(2)
50 DISP SPA(30);”_H_ _O_P _LK”
60 RESTORE
70 READ Xpos,Ltr$

173

Branching and Subroutines
Structured Programming

80 LOOP
90 CURSOR (Xpos,4) ! Put cursor at current blank.
100 INPUT ””;Char$[1;1]
110 IF Char$=Ltr$ THEN
120 DISP ” Good Guess!”
130 WAIT 1000
140 DISP ” ”
150 EXIT IF Ltr$=”C” ! Exit loop if last guess is C.
160 READ Xpos,Ltr$
170 Goodguess=Goodguess+1
180 ELSE
190 BEEP
200 DISP ”Wrong letter ... try again.”
210 WAIT 1000
220 DISP ” ” ! Clear message line.
230 CURSOR (Xpos,4)
240 Badguess=Badguess+1
250 END IF
260 END LOOP
270 DISP ”You guessed it within”;Goodguess+Badguess;”tries,”;
280 DISP ”and”;Badguess;”incorrect guesses!”
290 END

The REPEAT Block

The REPEAT and UNTIL statements allow repeated execution of a series of statements
until a certain condition is true. This condition is evaluated at the end of the loop. The
loop is always executed at least once. The syntax for the block is as follows:

 REPEAT
 (statements)
 .
 .
 .
 UNTIL conditional expression

If control is transferred into the loop via a GOTO or other non-structured construct, an
error results when UNTIL is encountered.

The next sequence repeats lines 50 and 60 until X=Xsqr.

10 INPUT ”Enter an integer >1:”;X
20 Xsqr=X*X
30 DISP ”Sum of”;X;”through”;Xsqr;”is:”;
40 REPEAT
50 Sum=Sum+X
60 X=X+1
70 UNTIL X=Xsqr
80 DISP Sum
90 END

174

Branching and Subroutines
Structured Programming

The SELECT Block

The SELECT block allows any of a variety of blocks of statements to be executed
depending on the value of a selection expression. The syntax of the SELECT block is as
follows:

 SELECT string or integer selection expression
 CASE case list
 (statements)
 .
 .
 .
 CASE ELSE
 (statements)
 .
 .
 END SELECT

Thecase list is a list of case items separated by commas. A case item is defined as fol-
lows:

 or

Any number of CASE statements may be used. CASE ELSE is optional. At syntax time,
all constants in thecase list are verified to be either type string or integer. At execution
time, a check is made to verify that the type of selection expression matches the types in
the CASE statements. Some example CASE statements are shown here:

100 CASE 1
100 CASE <5
100 CASE >59
100 CASE 1 TO 10
100 CASE ”A” TO ”J”

If the selection expression matches the ranges specified in any of the CASEs, the state-
ment block following that CASE is executed. If no CASE is matched, the statement
block following the CASE ELSE is executed. If there is no CASE ELSE, the SELECT
block is entirely bypassed. Any CASEs following the first CASE ELSE are ignored.

If control is passed into the SELECT block via GOTO or other non-structured construct,
the first CASE or CASE ELSE encountered causes control to transfer to the line follow-
ing END SELECT. Statements following the SELECT, but preceding the first CASE or
CASE ELSE, are not executed unless control is specifically passed to them via GOTO or
another non-structured construct.

Constant

″string″

TO[]
Constant

″string″

<

>

<>

constant

″string″

175

Branching and Subroutines
Structured Programming

The next program sequence traps many errors typically encountered in a text processing
program. The SELECT BLOCK defines a display message to explain each error. The
Disperr routine inserts the error message at the current cursor position in test.

1000 Err_msgs: !Display error message and wait for ENTER key.
1010 BEEP
1020 SELECT ERRN
1030 CASE 18
1040 Line1$=”INPUT LINE IS TOO LONG.”
1050 Line2$=”HIT ENTER, EDIT AND RE-INPUT THE LINE.”
1060 CASE 53
1070 Line1$=”IMPROPER FILE NAME FORMAT.”
1080 Line2$=”HIT ENTER AND RE-SPECIFY FILE NAME.”
1090 CASE 56
1100 Line1$=”FILE NAME IS UNDEFINED.”
1110 Line2$=”HIT ENTER AND RE-SPECIFY FILE NAME.”
1120 CASE 132 TO 134
1130 Line1$=”PRINTER OFF-LINE OR SWITCHED OFF.”
1140 Line2$=”READY PRINTER AND PRESS ENTER TO CONTINUE.”
1150 CASE ELSE ! Other errors trapped here.
1160 Line1$=ERRM$
1170 Line2$=”CALL SYSTEM MANAGER FOR HELP.”
1180 WAIT ! Wait for softkey.
1190 END SELECT
1200 GOSUB Disperr
1210 IF (CURKEY=5) OR (CURKEY=6) THEN RETURN
1220 GOTO Start
1230 Disperr: !
1240 Ypos=YPOS
1250 CURSOR (1,Ypos)
1260 DISP ” ” ! Make room for message in text.
1270 CURSOR (1,Ypos),IV(80)
1280 DISP Line1$
1290 DISP Line2$
1300 INPUT ! Wait for ENTER key.
1310 CURSOR (1,Ypos)
1320 DISP ” ” ! Delete message.
1330 CURSOR (1,Ypos)
1340 RETURN

176

Branching and Subroutines
Structured Programming

177

7

 Subprograms

Programs developed for business applications such as company payroll or inven-
tory control can easily contain hundreds of statements. A large program becomes
easier to develop, to debug, and to document if it is divided into several program
segments, each of which performs a single task. The termprogram segment may
refer to either a main program or a subprogram.

178

Subprograms

A subprogram is a group of one or more statements that performs a certain task
under the control of the calling program segment. The machine runs each main
program and each subprogram independently of each other. The program segment
which is currently being executed is called the current environment.

A subprogram enables you to repeat an operation many times, substituting differ-
ent values each time the subprogram is called. Subprograms can be called at
almost any point in a program and are convenient and easy to use. In addition to
giving greater structure and independence to your programming, subprograms
may conserve memory through the use of local variables and dynamic memory
allocation.

There are two types of subprograms—multiple-line function subprograms and
subroutine subprograms. Themultiple-line function subprogram is designed to
return a value to the calling program, and is used like a built-in function such as
SGN or CHR$. It is defined using the DEF FN statement. Asubroutine subpro-
gram is designed to perform a specific task. It is defined using the SUB statement.
Subprograms are separate program segments located after the main program in
memory.

The statements described in this chapter are:

CALL Accesses a subroutine subprogram.
DEF FN Defines multiple-line function subprograms (single line functions are

covered in page 125).
FNEND Declares end of a multiple-line function subprogram.
RETURN Returns control and a value to the calling program segment.
SUB Defines a subroutine subprogram.
SUBEND Terminates a subprogram and returns control to the calling program

segment.
SUBEXIT Returns control from a subroutine subprogram before SUBEND.
DEL SUB and
DEL FN Delete entire subprograms or function programs from memory.

Subprograms are recorded into disk files, with their accompanying main pro-
grams, by using the STORE or SAVE statements described in page 195 . The
LOAD SUB statement is available to bring one or more STOREd subprograms
back into memory. See page 195 for details.

179

Subprograms
Parameters

Parameters

Values are passed between a subprogram and the calling program segment using
parameter lists. There are two kinds of parameters—formal and pass.Formal
parameters are used to define the subprogram.Pass parameters are used to pass
values from the calling program segment to the subprogram. Each pass parameter
must correspond to a formal parameter.

The formal parameter list is used to define the subprogram variables and relate
them to calling program variables. In addition, the parameter list includes non-
subscripted numeric and string variable names, array identifiers (an array name
followed by (*) specifies use of the entire array), User Defined Types(see section ,
User defined Types, on page 93) and file numbers (see page 195). Parameters
must be separated by commas, and the parameter list must be enclosed in paren-
theses.

Numeric types REAL, SHORT, INTEGER and DINTEGER can be declared in a
formal parameter list by placing the keyword before either a parameter or group
of parameters. For example:

10 SUB X(A,B$,INTEGER C(*),D,SHORT E,F,#3,G)

The array C and simple variable D are declared as integer precision; E, F and G
are short precision; and A is real precision. The #3 parameter refers to data file
number 3.

NOTE: Instead of declaring a formal parameter to be a REAL, SHORT, INTEGER or DINTEGER,
you could declare it as NUMERIC. Then it will be one of the passed type, i.e. if passed an
INTEGER, it returns an INTEGER, if passed a REAL, it returns a REAL.

When calling a subprogram or function with a STRUCT argument, you can pass
an object either anonymously or specify a type name.

 CALL Sub(STRUCTA)

 . . .

 SUBSub(A {AS|:} TypeName)

 SUBSub(STRUCTA)

Like regular variables, types can either be passed by value or by reference. When
passed by value, a copy is passed to the subroutine.

180

Subprograms
Parameters

For example:

 TYPE Type

 INTEGER I

 END TYPE

!

 DIM Inst:Type

 Inst.I=0

 CALL Sub(Inst)

 PRINT Inst.I

 CALL Sub((Inst))

 PRINT Inst.I

 STOP

!

 SUB Sub(STRUCT A)

 A.I=A.I+1

 SUBEND

A STRUCT can be passed to a subprogram or function in two manners:

Instances can be passed to a SUBroutine either anonymous or with an associated
type.

• When no type is specified in the SUBprogram or function definition, the struct is passed
"anonymously" as an argument. Any type is valid and no validation is performed on the
argument. RTTI (TYPEOF$, IS A) can be used to operate on it.

• When a type is specified in the SUBprogram or function definition, only variables of
the given (or derived) type are accepted, else a runtime error 8 is issued. The type must
have been exported previously.

For example:

CALL X(STRUCT X)

SUB X(STRUCT Any) ! Anonymous

CALL Y(STRUCT X)

SUB Y(STRUCT Known:Tknown) ! Passed value must be of type Tknown
 ! or derived from it. Tknown must have
 ! been definined previously

The pass parameter list used in calling the subprogram can include numeric and
string variable names, array elements and identifiers, numeric and string expres-
sions, user defined types and data file numbers. The pass parameter list must also
be enclosed in parentheses.

181

Subprograms
Parameters

Parameters must be separated by commas. All arrays in the pass parameter list
must be defined within the calling program segment.

When a subprogram is called, each formal parameter corresponds to, and is
assigned, the value of the pass parameter which is in the corresponding position in
the pass parameter list. The parameter lists must have the same number of param-
eters, and the parameters must match in type—numeric precision or string, simple
or array, or file. Notice that numeric types must match in precision—real, integer,
or short.

Notice the correspondence between pass and formal parameters in the next exam-
ple:

20 INTEGER C(2,2),D(2,2)
30 CALL X(A,B$,C(*),(D(1,2)),3,E+F,#6,(G))
.
.
.
70 CALL X(5,(C$[1,12]),D(*),4,(X(4,3)),(A),#2,E*3)
.
.
.
120 SUB X(X,Y$,INTEGER Z(*),SHORT K,L,M,#9,N)

Parameters are passed either by reference or by value. When a parameter is passed
by reference, the corresponding formal parameter shares the same memory area
with the pass parameter. Thus, changing the value of the variable in the subpro-
gram also changes the value of the variable in the calling program. Arrays are
always passed by reference.

When a parameter is passed by value, the variable defined by the corresponding
formal parameter is assigned the value of the pass parameter and given temporary
storage space in memory. Numeric and string expressions are necessarily passed
by value. Enclosing a pass parameter in parentheses causes it to be considered an
expression and thus passed by value, rather than by reference. Passing by value
prevents the value of a calling program variable from being changed within a sub-
program.

In the following example, all parameters in line 200 are passed by value, while
those in line 250 are passed by reference:

200 CALL Active(Y+3,(X(2,4)),(X(1,4)),.5,(Y),(Line$[5,8]))
.
.
.
250 CALL Active(Y,Data(2,4),X(1,4),A,Z,Line$)
.
.
.
290 SUB Active(A,B,C,D,E,F$)

182

Subprograms
Parameters

Any parameters passed by value are converted, if necessary, to the numeric type
of the corresponding parameter in the formal parameter list. For example, say that
PI is passed by value to an INTEGER formal parameter. Its value would be
rounded to 3 when the subprogram is called.

Those passed by reference must match exactly, otherwiseError 8 occurs. No
conversion is made.

183

Subprograms
Parameters

For instance:

10 DIM C(3,3),D(3,3)
20 CALL X(A,B$,C(*),D(1,2),3,E,#5,G)
30 END
40 SUB X(X,Y$,INTEGER Z(*),SHORT K,L,M,#3,N)
50 SUBEND
60 END

RUN
ERROR 8 IN LINE 20

NUMERIC is used in parameter passing to subroutines and functions. NUMERIC
will bypass type checking for parameters and will match any numeric data type.

Example program:

REAL R
INTEGER I

CALL Val(A$,R)
CALL Val(A$,I)

SUB Val(A$, NUMERIC V)
 ON ERROR GOTO E
 V=VAL(A$)
 SUBEXIT
E: V=0
SUBEND

184

Subprograms
Multiple-Line Function Subprograms

Multiple-Line Function Subprograms

The multiple-line function subprogram is used to define a numeric or string func-
tion and return a value to the calling program segment. The first line of a numeric
multiple-line function subprogram is:

 DEF FN subprogram name [(formal parameter list)]

For a string function, the first line is:

 DEF FN subprogram name$ [(formal parameter list)]

The subprogram name must be a valid name.

The last line in a multiple-line function subprogram should be:

 FNEND

The value to be returned to the calling program segment as the value of the func-
tion is specified by:

 RETURN numeric expression

or

 RETURN string expression

The function subprogram is called automatically by specifying the function name
and pass parameter list in a program line:

 FN subprogram name [(pass parameter list)]

or

 FN subprogram name$ [(pass parameter list)]

Here is an example of a numeric function:

10 DIM C(50)
20 A=10
30 B=20
40 FOR I=0 TO 50
50 C(I)=I
60 NEXT I
70 X=FNTotal(A,B,C(*))
80 PRINT ”RESULT=”;X

.

.
120 END
130 DEF FNTotal(X,Y,Z(*))

185

Subprograms
Multiple-Line Function Subprograms

140 Tot=0
150 FOR I=X TO Y
160 Tot=Tot+Z(I)
170 NEXT I
180 RETURN Tot
190 FNEND

RUN
RESULT= 165

The function subprogram computes the value ofTot using the equation:

Notice that the variable X in the function subprogram is not the same as X in the
main program.

Here is an example of a string function:

10 A$=”HELLO”
20 B$=”GOODBYE”
30 Rep=2
40 PRINT FNResult$(A$,B$)
50 END
60 DEF FNResult$(H$,G$)
70 String$=H$”...”G$
80 RETURN ”****”TRIM$(String$)”****”
90 FNEND

RUN
****HELLO...GOODBYE****

There can be more than one RETURN statement in a function subprogram, but
only one is executed each time the subprogram is executed. Here is an example
based on the previous numeric function subprogram:

10 DIM C(2,2)
20 C(0,0)=C(0,1)=C(1,0)=C(1,1)=2
30 A=B=4
40 PRINT ”RESULT=”;FNTotals(A,B,C(*))
50 END
60 DEF FNTotals(X,Y,Z(*))
70 A=Z(0,0)+Z(0,1)+Z(1,0)+Z(1,1)
80 B=X+Y+A
90 IF XY THEN RETURN B
100 RETURN 2*B
110 FNEND

RUN
RESULT= 32

Tot Z I()
I X=

Y

∑=

186

Subprograms
Multiple-Line Function Subprograms

If a single-line and multiple-line function are defined with the same name and the
name is referenced, the single-line function is the one that is accessed if it is
defined in the calling program segment.

187

Subprograms
Subroutine Subprograms

Subroutine Subprograms

Subroutine subprograms allow you to repeat a series of operations many times
using different values or break a large problem down into a series of smaller ones.
A subroutine subprogram performs a specific task. It consists of one or more state-
ments following the SUB statement, which is the first statement in a subroutine
subprogram. Syntax for the SUB statement is as follows:

 SUB subprogram name [(formal parameter list)]

Thesubprogram name must be a valid name.

The last line in a subroutine subprogram should be:

 SUBEND

This returns control back to the calling program segment.

The subroutine subprogram is accessed and values supplied by the CALL state-
ment. Syntax for this statement is as follows:

 CALL subprogram name [(pass parameter list)]

Here is a simple example of a subroutine subprogram used to write a heading for
data output:

10 CALL Header
.
.
.

200 END
210 SUB Header
220 PRINT TAB(11),”NAME”,TAB(30),”CURRENT SALARY”
230 SUBEND

Here is a more complex example which outputs a readable table when values are
supplied:

10 CALL Table(Dept,Total,C(*),Super$)
.
.
.

40 END
50 SUB Table(Dept,Total,C(*),Super$)
60 PRINT ”DEPARTMENT NUMBER:”;Dept,”SUPERVISOR:”;Super$,LIN(2)
70 PRINT ”PRODUCT NUMBER”,”% OF TOTAL SALES”,LIN(2)
80 FOR I=1 TO 60
90 PRINT SPA(5);C(1,I),SPA(10);C(2,I)/Total
100 NEXT I
110 SUBEND

188

Subprograms
Subroutine Subprograms

The SUBEXIT statement is used to transfer control back to the calling program
segment before SUBEND is executed.

For example:

120 SUB Pay(X,Y)
.
.
.

160 IF XY THEN SUBEXIT
.
.
.

200 SUBEND

189

Subprograms
Subprogram Considerations

Subprogram Considerations

Temporary Default States

The computer enters a new operating environment when entering each subroutine
or function subprogram. The current environment is suspended until exiting the
subprogram. The following default states are set when a subprogram environment
is entered:

• Any READ statements in the subprogram refer only to DATA lists within that subpro-
gram.

• Any assigned file numbers not passed in a COM statement or a parameter list are not
accessible by the subprogram (they remain open).

• RAD, STANDARD, and OPTION BASE 0 modes are set.

• Any ON KEY#, ON HALT, ON ERROR, ON SIGNAL, ON DELAY, ON INPUT# as-
sociated with a GOTO or GOSUB is no longer active; ON KEY#, ON SIGNAL, ON
DELAY, ON INPUT# interrupts, however, may be logged for processing upon return
to the calling program.

• All ON END declaratives are deactivated.

Upon return to the main program, all of the above are restored to their previous
states.

Adding and Deleting Subprograms

There are two ways to add a new subprogram to a program. It may either replace
an existing subprogram or come after all other subprograms.

In order to delete the first line of a subprogram, the SUB or DEF FN statement,
the entire subprogram must be deleted. To delete an entire subprogram, use the
DEL SUB or DEL FN statements:

 DEL SUB subprogram name [TO END]

or

 DEL FN function name [$] [TO END]

Each statement deletes the named subprogram or function from memory. If TO
END is specified, all successive subprograms and functions are also deleted.

The SUB statement can be edited as long as it remains a SUB statement or is
changed to a DEF FN.

190

Subprograms
Subprogram Considerations

Using COM Statements

Values can also be passed to a subprogram with a COM statement. The list of
items in the subprogram COM must be a subset of the main program COM state-
ment; that is, it must match to some point in the main program COM.

Here are some valid examples:

20 COM A(4,4),B,INTEGER C,D(3,3),E$[28],F$(2,4)[56]
.
.
.

150 END
160 SUB Payroll
170 OPTION BASE 1
180 COM X(*),Y,INTEGER Z,Q(1:3,1:3)

.

.

.
220 SUBEND
230 DEF FNAccounts(X,Y,Z)
240 COM I(1:4,1:4)

Here is an invalid example using the same main program COM statement:

300 SUB Total
310 COM M(4,4),N

.

.

.

.
350 SUB Price
360 OPTION BASE 1 There is no item correspondin
g
370 COM L(4,4),M,Q(3,3) to array Q, causing error 47 .

Arrays can be specified in a subprogram COM statement using an array identifier
(see line 180 above). A variable cannot be an item in a subprogram COM state-
ment, however, if it is also a formal parameter. For example, if the following is
executed,Error 12 occurs:

400 SUB Sub(X,Y,Z$)
410 COM A(2,2),X

Subprograms may also consist of any of the other variable-declarative state-
ments—DIM, REAL, SHORT, INTEGER and DINTEGER. The variables
declared, however, may not be in the subprogram COM statement or the formal
parameter list.

191

Subprograms
Subprogram Considerations

Here is a valid example:

450 SUB X(X,Y(*),Z$,A)
460 COM B(3,3),C$[20],D,SHORT E
470 DIM F(5,2),G$(2,2)[50]
480 SHORT H,I(3,7,2)

Here is aninvalid example:

520 DEF FNTaxes(A,B(*),C$,D)
530 COM E(3,4),INTEGER F
540 DIM C$[20],E(2,2)

C$ andE were already defined, soERROR 12 IN LINE 540 WITH C$ will
occur.

All variables in a subprogram that are not part of the formal parameter list or the
COM statement are known as local variables and cannot be accessed from any
other program segment. Storage of local variables is temporary; the memory
space is returned to user read/write memory upon return to the calling program.
All variable names in a subprogram are independent of variables with the same
name in other program segments or other subprograms.

File numbers can be passed to a subprogram in the parameter list. For example,
the following statements assignDATA to file number 3:

10 ASSIGN #1 TO ”DATA”
20 CALL Routine(#1)

.

.

.

60 SUB Routine(#3)

Any operations, such as PRINT#, which involve file #3 in the above subprogram
will affect file #1 (DATA) in the calling program. The data pointers in file #1 are
maintained in file #3; then the status of file #3 is passed to file #1, and vice versa,
when the subroutine is exited.

100 CALL X(#4)
.
.
.

140 SUB X(#2)
150 ASSIGN #2 TO ”Payroll”

When control returns to the calling program, file #4 is still assigned to the file
Payroll.

192

Subprograms
Subprogram Considerations

A file can also be implicitly buffered in this manner:

200 CALL Data(#4)
.
.
.
.

240 SUB Data(#2)
250 ASSIGN #2 TO ”Payroll”

When control returns to the calling program, file #4 is still assigned to Payroll and
still buffered.

If a file is opened in a subprogram, but not passed as a parameter or in COM, it is
automatically closed upon return to the calling program. See page 195 for an
explanation of ASSIGN.

Note that if a variable in a COM declaration is wrong, any variables which follow
will also be disregarded.

193

Subprograms
Busy Lines

Busy Lines

When a subprogram is accessed from a calling program, a condition is created
known as a busy line or a busy subprogram.

Here is an example of a busy line:

10 A=FNX(B)
.
.
.

50 DEF FNX(D)
.
.
.

90 FNEND

Line 10 is busy after the subprogram at line 50 is accessed and remains busy until
FNEND is executed.

Here is an example of a busy program:

100 CALL X(A,B,C)
.
.
.

140 SUB X(X,Y,Z)
150 CALL You

.

.

.
190 SUBEXIT
200 SUB You

.

.

.
240 SUBEXIT

The subprogram X at line 140 becomes busy when it is called (line 100). The sub-
program remains busy until it is exited.

Busy lines and subprograms can have an effect when editing a running program or
executing LINK, DEL SUB, or DEL FN. Attempting to delete or alter a busy line
causes an error message. In order to delete or alter the line, either program execu-
tion will have to be STOPped or control must be “returned” to the calling program
segment (for example, RETURN, EXIT). LINK is described in page 195 .

194

Subprograms
Busy Lines

195

8

File Storage

Data and programs can be stored and retrieved for later use. This chapter dis-
cusses the following statements and functions, associated with file storage and
retrieval:

MASS STORAGE IS
(MSI) Specifies a default directory for successive file storage opera-

tions.

196

File Storage

READ LABEL Returns either the label of the directory currently in use or the
labels of all volumes currently configured.

CAT Lists the contents of a directory.

STORE Creates a program file and records a program for later use.

LOAD Copies a previously stored program into the computer memory.

LOAD SUB Copies subprograms from a program file to the computer mem-
ory.

RE-STORE Stores a program into an existing program file.

SAVE Creates a special data file and stores a program as a series of
strings.

GET Gets data from a special data file and converts it into the com-
puter memory as a program.

LINK Same as GET, except all variable values are retained.

RESAVE Saves program lines as a series of strings into an existing spe-
cial data file.

MERGE Inserts program lines from a file between lines currently in
memory.

CREATE Names and establishes a special data file or a regular data file.

ASSIGN Opens a data file and assigns it a file number. Also used to close
(de-assign) each data file.

PRINT# Writes data into a data file.

READ# Copies data from a data file into variables within a program.

ON END# Branches to a recovery routine when an end-of-file (EOF) mark
is detected during READ#.

OFF END# Disables ON END#.

PURGE Deletes a data file from the disk directory.

COPY Duplicates the contents of one data file to another. Also for out-
putting the contents of a spool file to an output device.

RENAME Assigns a new name to an existing data file.

197

File Storage

LOCK# and
UNLOCK# Control access to specific data files in multi-user applications.

TYP Determines the type of the next data item to be read (integer,
string, etc.).

SIZE Returns the size of a specified file.

REC Returns the current position of the record pointer in a specified
file.

WRD Returns the current position of the word pointer for a specified
file; use with direct-word access.

RESET# file numberErases the contents of file to which the file number is
ASSIGNED. File position is reset. Similar to purging and rec-
reating the file. If this file is being used as a workfile, this will
also reset workfile state. The file must be ASSIGNED either
EXCLUSIVE (default ASSIGN) mode or must be locked in
ASSIGNED in UPDATE mode.

Some functions are available for compatibility reasons, only. To get the syntax of
this functions, see section , File Storage function, on page 2.

NOTE: The words “special data file” refer to a file that contains header information. The header
consists of three lines of information. The first line tells the length of records currently in
the file, the second tells the number of records currently in the file, and the third tells the
maximum number of records defined for the file. This is different from a regular data file
which contains ASCII data without any information about the file structure. Both special
data files and regular data files have the extension .DATA.

If your application involves handling a large amount of data, consider using Elo-
quence DBMS (database management software). Database structures and opera-
tions are covered in theEloquence DBMS Manual.

198

File Storage
Syntax Terms

Syntax Terms

The following terms are used in file storage operations:

file name on HP-UXThe maximum length of an Eloquence file name depends
upon how the HP-UX operating system is configured; however,
the maximum length bounds for configuration are from 14 to
255 characters. Of these 14 to 255 characters, 5 spaces are des-
ignated for the file name extension (for example, .DATA,
.PROG, .FORM). The remaining 9 to 250 characters are user
supplied. To further explain, suppose the system is configured
such that file names can have a maximum length of 14 charac-
ters. Of these 14 characters, 5 character spaces are reserved for
the file name extension (.DATA, .PROG, .FORM). This leaves
a maximum of 9 characters spaces to be supplied by the user.
The user can choose to supply a name that is from 1 to 9 char-
acters in length. Note that the name supplied does not have to
be 9 characters long. Nine is the maximum length the name can
be.

The file namecannot contain a comma (,) or colon (:).

It is recommended that HP-UX wildcard charactersnot be used
in Eloquence file names. Using them could cause problems
when addressing these files using HP-UX commands. For
example, if you delete the Eloquence file TEST*.DATA from
the HP-UX prompt, all files beginning with the letters TEST
and having the extension .DATA would be deleted. HP-UX
wildcard characters are as follows:

 $? * [] / \ () @ ” ‘ ’ ^ # ;

file name on Windows
NT The maximum length of an Eloquence file name under Win-

dows NT can be 64 character, this includs the extension.It is not
recommened to use characters, which have a special meaning
on Windows NT.

file number The number assigned to a data file by an ASSIGN statement. Its
range is from 1 through 10.

volume label A one- to eight-character string assigned to an HP-UX direc-
tory in either the global, group, or user configuration file.
Blanks, nulls, commas, and colons are ignored.

199

File Storage
Syntax Terms

volume spec A string within quotes containing either a unit spec (see below)
or a volume label preceded by a comma.

file spec A string expression of the form "file name[,volume spec]" The
file name, in this instance, is the user supplied name described
above under “file name”. The optionalvolume spec is needed
when addressing a mass storage device other than the default
device (see page 204). Notice that the string expression must
be within quotes.

unit spec A string expression of the form :volume letter[select
code[,device number[,unit code]]] The volume letter can be any
uppercase letter A through Z. Theselect code, device number,
andunit code can be an integer from 0 through 9.

Unit spec are not supported on Windows NT and not recom-
mended to use on HP-UX.

200

File Storage
File Structure

File Structure

An understanding of files and records is essential when discussing file storage;
therefore, this section describes files and records as well as different ways they
can be accessed.

Files

Files are the basic unit into which programs and data are stored; however, they
must be created and named before they can be stored. Different types of files can
be created:

• Program files (.PROG).

• Data files (.DATA).

• Forms files (.FORM).*

• Database (DBMS) files.*

* Refer to the corresponding programming manual for instruction on using these
files.

Records

Each file contains one or more logical records. These records are established using
the CREATE statement. They can have any number of bytes from 1 to 999999. A
logical record is the smallest unit of storage which is directly addressable.

A disk file cannot be greater than the maximum available storage space on the
disk, or 999999 records, whichever is greater.

EOFs and EORs

Files and logical records are bounded on the storage medium by marks which sig-
nify their ends. There are two types of marks—end-of-file (EOF) and end-of-
record (EOR).

An EOF is placed at the end of the data in a file by specifying END in a PRINT#
statement. The EOF mark takes up two bytes of storage space unless the last data
item goes exactly to the end of the file.

An EOR mark can signify the end of data within a logical record. See the PRINT#
statement for details.

201

File Storage
File Structure

Data Access Methods

There are three ways to store and retrieve data—serial access, direct access, and
direct word access. You determine which method of data access best suits your
needs. Since the decision will be based on the amount of available disk storage
and the time required for your operations, an understanding of data file structure is
necessary for the most efficient use of the system.

For example, suppose you are working with thousands of customer account num-
bers and their balances due. Your job is to output a daily list of all customers and
their balances. In this situation, it is best to pack all data items (customer numbers
and balances due) together tightly in a data file to save space on the disk and to
save time when accessing the data. This is serial access.

To update individual customer balances, you will need another file containing cus-
tomer numbers, names, addresses, items purchased, and balances due. The data in
this file is arranged so that each individual item (customer name or number) can
be accessed. This method of storing data usually takes more space on the disk.
The advantage here is that any item can be easily updated since individual items
can be accessed much faster. This is direct access.

When you wish to update many individual portions of a file as fast as possible,
direct word access can be used. Using this method allows better storage efficiency
than direct access.

Serial Access

Data treated as a unit of information (instead of as individual items) can be han-
dled using serial PRINT# and serial READ# statements. When serial PRINT#
statements are used to store data on the disk, data items are stored compactly
without identifiable marks between items. These data items make up a file and can
contain as many records as necessary. Data lists can contain both numerics and
strings.

All or part of the information stored originally can be retrieved in one serial
READ# statement. The list of data elements read does not have to be identical to
the list originally printed in the file, but these data lists must be identical in size,
type (numeric or string), and order. (The names and numeric precision you assign
to these elements can still vary.) The beginning of a serial file is the only point
where data access is possible.

Direct Access

When data items are to be handled individually (instead of as a unit), direct
PRINT# and direct READ# operations can be used. The same PRINT# and
READ# statements are used with an additional parameter to specify a record num-

202

File Storage
File Structure

ber. Each data item is stored in one (or more, if required) records so that each data
item is directly accessible. Storing data directly may not utilize storage space
effectively, since only a part of a record (or records) required for storage may be
used.

Each of the data items stored originally can be retrieved by using a direct READ#.
The READ# begins at the start of a specified record. The list of data items does
not have to be identical to the list originally printed in the record, but the data
items must be identical in size, type (numeric or string), and order. Notice that
since the numeric precision need not be the same from PRINT# to READ#,
numeric conversion is easily performed.

Direct Word Access

When you wish to handle individual data items and also wish to specify the exact
point within a record where the data is to be printed or read, use direct word
access. This access method is specified by adding another parameter, called a
word pointer, to the READ# and PRINT# statements.

Direct word access offers the best accessibility to data, since you specify the exact
word at which the read or print begins. Use of disk storage space is good, too,
since end-of-record (EOR) marks are not added after the data; therefore, remain-
ing space in the record can be used for more data storage.

203

File Storage
File Structure

Comparing Data Access Methods

As mentioned before, you decide on which method of data accessing is best for
your particular needs. This decision is usually not made easily, because of the
advantages and disadvantages of each method. For example, more efficient stor-
age space utilization must be sacrificed for a shorter access time and vice versa.
Once your decision has been made, it is difficult to change later, so make your
decision carefully.

The advantages and disadvantages of accessing data with each method are sum-
marized below:

Table 10 Comparison of Data Access Methods

Access Time Storage Efficiency

Serial Varies - longer for higher-numbered
records

Best - data is packed solidly

Direct Good - direct access to any record Varies - only part of a record
may be used

Direct Word Best - only part of a record need be
accessed

Good

204

File Storage
The Default Mass Storage Device

The Default Mass Storage Device

At startup of Eloquence or when SCRATCH A is executed, a default mass storage
device is automatically specified. This is the device to which all file storage oper-
ations are directed if no other device is specified. To establish the default mass
storage device, Eloquence looks consecutively in the user and group configuration
files for an MSI statement. If an MSI statement is not found, the first VOLUME
spec in the global configuration file is used as the default mass storage device.

The default device is changed by executing the MASS STORAGE IS statement:

 MASS STORAGE IS volume spec

or

 MSI volume spec

Thevolume spec is a string expression containing either aunit spec or avolume
label. Note that a comma before thevolume label is optional.

The following example shows how to change the default device by specifying the
MSI command and aunit spec:

MASS STORAGE IS ”:C2,7”

NOTE: The "unit spec" is not supported on Windows NT and not recommended on HP-UX.

As another example, if the label TEST is assigned to the directory /usr/test, any of
the following statements can be used to set this directory as the default mass stor-
age device:

10 MASS STORAGE IS ”TEST”
.

200 MSI ”TEST”
.
.

500 Label$=”TEST”
510 MSI Label$

To reset the mass storage device to its value at startup of Eloquence, enter the fol-
lowing command:

MSI ””

You can omit theselect code, controller address, andunit code parameters from
successive file specs by stating them in a MASS STORAGE IS at the beginning of
a program.

205

File Storage
Cataloging Files (CAT)

Cataloging Files (CAT)

The CAT (catalog) statement outputs a listing of directory information for a stor-
age medium, including read/write authority, the file owner, the group, and physi-
cal specifications.

 CAT[ALOG] [catalog spec] [,volume spec] [,file type]

NOTE: The CAT statement is not supported on Windows NT platform

Thecatalog spec is an optional string expression consisting of 0 to 6 characters,
followed by an optionalvolume specifier. When thecatalog spec is specified, only
those files whose names begin with that combination of characters are listed.

The optionalfile type is a four-character string which specifies you want to list
only that type of file (for example, PROG, DATA, or FORM).

The catalog listing is sent to the standard output device.

For example, the following CAT statement lists, to the standard output device, all
program files on the volume labeled Prog1 whose names begin with Ab:

CAT ”Ab,Prog1”,PROG

The next example shows a CAT statement and the listing it produces:

CAT”,MASTER”
total 3
-rw-rw-rw- 1 john tstctr 32 Nov 15 17:06 DATA.DATA
-rw-rw-rw- 1 john tstctr 2816 Nov 15 17:32 FRM.FORM
-rw-rw-rw- 1 john tstctr 1070 Oct 12 10:59 GAME.PROG

Listed below is an explanation of the columns of a catalog listing:

Access AuthorizationIndicates the type of access that is set for the file owner,
the group associated with the file, and all others. This could be
read (r), write (w), execute (x), or any combination of the three.
Taking the above example (-rw-rw-rw-), the firstrw- string
specifies the access authorized for the file owner, the second
(rw-) authorization for the group, and the third (rw-) authori-
zation for all others.

Link Counter Defines the number of links to a file.

User Id A one-to-eight character string, defining the file owner.

Group Id A one-to-eight character string, defining the group that owns
the file.

206

File Storage
Cataloging Files (CAT)

File Size The size of the file expressed in bytes.

Date The date the file was last saved.

Time The time the file was last saved.

Name The name given to the file when the information is stored on
the medium. The file name includes a five-character extension
defining what type of file it is (.DATA, .PROG, .ROOT, or
.FORM).

NOTE: The CAT statement is tied to the HP-UX command ll (long list). Therefore, messages that
occur upon executing a CAT statement are HP-UX messages. For exampleERROR 56
indicates that a file was not found,ERROR 170 indicates that the HP-UX ll command
failed. If a CAT statement is issued without any parameters and the directory is empty, no
files are listed and no message is returned. For more information refer to the HP-UX
documentation.

207

File Storage
Using message Catalogs

Using message Catalogs

The functions CATOPEN, CATCLOSE and CATGETMSG give application mes-
sage catalog support. This allows eloquence applications to use HP-UX message
catalogs (built using gencat).

Syntax:

CATOPEN "filename"
CATCLOSE
CATGETMSG ["Msg_set",] Msg_num;String_var$

Sample application code:

 DIM Msg$[80]
 CATOPEN “APP.CAT,TEST”
 Msg_set = 1
 Msg_num = 10
 CATGETMSG Msg_set,Msg_num;Msg$
 LDISP “Message = “;Msg$
 CATCLOSE

Msg_set may be omitted in CATGETMSG and will default to 1. If a CATGET-
MSG is executed with no previous CATOPEN, ERROR 51 (file not open) will be
returned.

If a message could not be located, the result variable will contain an empty string.

A message catalog remains open across programs (like COM) and will be reset if
program execution stops (e.g. END).

208

File Storage
Identifying Volume Labels

Identifying Volume Labels

To find the volume label(s) of the current directories in use, use the READ
LABEL statement.

 READ LABEL {string variable [ON volume spec] string array name}

If a string variable is specified, the label on the volume will be returned in that
variable. If thevolume spec is not specified, READ LABEL returns the volume
label of the current directory. If thestring array name is given, the volume labels
found will be returned in that array in the following form:

volume label :unit spec [*]

An * indicates the current volume.

The following is an example of the READ LABEL statement:

10 DIM A$(1:100)
20 READ LABEL A$(*) !Reads up to 100 volume labels.
30 FOR I=1 TO 100

40 IF LEN(A$(I))=0 THEN Done!Checks the length of the I th

element of A$.
50 P=POS(A$(I),”:”) !Looks for colon.
60 DISP A$(I)[1,P1];TAB(10);A$(I)[P;7];TAB(20);MAPVOL$(A$(I)[1,
P-1])
70 NEXT I
80 Done: END

MAPVOL$ in line 60 is used to show which volume label and unit spec are matched
to which directory.

Here are more examples:

READ LABEL A$ ON ””

Returns the volume label of the current mass storage device.

READ LABEL A$ ON ”:C2,7,2”

Returns the volume label associated with the unit spec :C2,7,2.

READ LABEL A$ ON ”,TEST”

Simply returns the volume label TEST.

NOTE: "unit spec" are not supported on Windows NT and is not recommended on HP-UX.

209

File Storage
Storing and Retrieving Programs

Storing and Retrieving Programs

Programs are stored into program and data files using STORE and SAVE. Pro-
grams are retrieved using LOAD, GET, LINK, or MERGE. The RUN command
can also be used to bring previously STOREd and SAVEd programs into memory
and begin execution. (see section , Storing a Program, on page 54)

NOTE: The statementsLOAD, GET, LINK, MERGE, {RE-}STORE and [RE-}SAVE can
not be executed on the commandline of the IDE. This functions are implemeted in a
different way. (see section , The Integrated Development Environment (IDE), on page 68)

The STORE Statement

The STORE statement creates a program file and stores the program currently in
memory into the program file. A program file has the extension .PROG. The pro-
gram is stored in an internally coded format, allowing rapid access with LOAD or
LOAD SUB. Syntax for the STORE statement is as follows:

 STOREfile spec [,ProtectCode] [;Option]

As an example, the following program line stores the program currently in mem-
ory onto the disk labeled PROGS under the name Life2:

210 STORE ”Life2,PROGS”

Thevolume label need not be included when addressing the default storage
device.

210

File Storage
Storing and Retrieving Programs

ProtectCode The optional protect code must be specified in order to edit a pro-
tected program file or to save a program with password protection.
When you load a protected program without the correct password,
you will neither be able to edit the program, nor will you be able to
store the program. If you give the wrong password, an error message
is returned by the LOAD statement. When you specify a ProtectCode
for the STORE and RE-STORE statements, the program will be
stored protected. Since program protection is not prossible with pro-
gram formats before Eloquence A.06.00, this will use the new
A.06.00 program format.

Option The Option argument contains either the desired program format or a
comma separated list of program file options.
Program compatibil-
ity option This option simply specifies the Eloquence

revision, the program format should be com-
patible to.
Example:
STORE "PrgName";"A.05.01"

Program optionsAlternatively, you can specify a comma sep-
arated list of options and settings which
should be used to store the program file. The
following options are currently supported:

Example:

 STORE "PrgName";"rev=A.05.01"

 STORE "PrgName";"fmt=TAG"

 STORE "PrgName";"fmt=2"

Error Messages

 62 - File is protected or wrong protect code specified

 66 - You are not authorized to store this program

Table 11

option possible values Comment

rev A.xx.xx Eloquence revision

fmt HP260 or "0" Compatible format

EXT or "1" A.05.01 program format

TAG or "2" A.06.00 program format

211

File Storage
Storing and Retrieving Programs

The RE-STORE Statement

A program file can be loaded into memory and edited, then re-stored into the same
file using the RE-STORE statement. Syntax for this statement is as follows:

 RE-STOREfile spec[,ProtectCode] [;Option]

The LOAD Statement

Programs recorded with STORE are retrieved with the LOAD statement. Syntax
for this statement is as follows:

 LOAD file spec [,line id] [,ProtectCode]

The LOAD statement erases any program and data in memory and loads the pro-
gram. Any information stored in common, however, is preserved if the loaded
program has a COM statement. If the LOAD statement comes from the keyboard
and noline id is specified, control returns to the keyboard after loading. If it
comes from execution of a program line in memory, execution begins at the first
line of the loaded program. When theline id is specified, however, execution of
the loaded program begins at that line.

The program can only be loaded when the right protectcode is provided, otherwise
an error 66 occures.

For example, the following program line loads the program in the previous exam-
ple back into memory and execution then begins with line 20:

220 LOAD ”Life2”,20

The LOAD SUB Statement

The LOAD SUB statement loads subprograms from a program file to the end of
the program currently in memory.

 LOAD SUBfile spec [,starting line number[,increment]]

 [;starting segment [,last segment]]

With no optional parameters, LOAD SUB loads all subprograms (both FN and
SUB) from the specified program file. Thestarting segment andlast segment
parameters can be used to specify certain subprograms in the file. For example, if
you wish to load only the third subprogram, specify LOAD SUB;3,3. An error
occurs if either value is greater than the number of subprograms in the specified
program file.

212

File Storage
Storing and Retrieving Programs

If the first line number in the subprogram is not greater than the last line of the
current program in memory, the subprogram is automatically renumbered. The
renumbering starts after the last line of the current program, in increments of ten.
Anotherstarting line number can be specified, if desired, but it must be greater
than the last number of the current program. Another line-numbering increment
can also be specified, if desired.

The SAVE Statement

The SAVE statement creates a special data file and stores the program and any
subprograms currently in computer memory into the file. This special data file has
the extension .DATA. Syntax for the SAVE statement is as follows:

 SAVEfile spec [,beginning line id[,ending line id]]

The program is saved as string data, one program line per string. In this way, the
file can be read, modified, or rewritten as string data by other programs.

When only thefile spec is given, the entire program is saved. If thebeginning line
id is specified, the program is saved from that number to the end. If both line ids
are specified, the program section from thebeginning line id through theending
line id is saved.

The following example saves the program currently in memory, beginning with
line 30, into a special data file named MONEY on the default storage device:

230 SAVE ”MONEY”,30

As another example, this program line saves lines 50 through 250 into the special
data file Prog1 on a disk named Software:

240 SAVE ”Prog1,Software”,50,250

NOTE: The words “special data file” refer to a file that contains information on the maximum
number of records, the length of records, and the number of records currently in the file.

NOTE: The STORE and LOAD operations are faster than SAVE and GET. STOREd programs are
already coded in an internal format, while SAVEd programs must be coded before they can
be executed.

The GET Statement

The counterpart of the SAVE statement, the GET statement, returns into computer
memory a program saved previously with the SAVE statement. GET will also
read into memory any string data file consisting of valid Eloquence statements.
Syntax for the GET statement is as follows:

213

File Storage
Storing and Retrieving Programs

 GETfile spec[,line id[,line id]]

If no line ids are specified, the GET statement erases any program and data in
memory (except that associated with a COM statement), as it loads the specified
file. Once the file is in memory, execution begins at the first line of the loaded pro-
gram.

When oneline id is specified, the loaded program is renumbered and executed
starting with the specifiedline id. If a secondline id is specified, the loaded pro-
gram is renumbered starting with the firstline id and is executed starting with the
secondline id. Any lower-numbered lines from a previous program are retained.
The numbering remains the same on the storage medium.

Here is an example addressed to the default storage device:

250 GET ”MONEY”,50

The file MONEY is retrieved and renumbered; any lower-numbered lines already
in memory are retained. Execution of the program starts at line 50.

Listed below is another example:

260 GET ”Prog1,Software”,50,10

This program is also renumbered with any lower-numbered lines being retained.
Execution begins with line 10 already in memory.

NOTE: ERROR 18 occurring during a GET, LINK or MERGE operation indicates that a line being
entered into memory is too long to be accepted (512 characters maximum).

NOTE: The STORE and LOAD operations are faster than SAVE and GET. STOREd programs are
already coded in an internal format, while SAVEd programs must be coded before they can
be executed.

The LINK Statement

The LINK statement is identical to the GET statement discussed previously,
except that the current values of all variables are retained. Syntax for this state-
ment is as follows:

 LINK file spec [,line id [,line id]]

If no line ids are specified, the program is loaded, erasing the current program in
memory.

The firstline id specifies that the loaded program is to be renumbered and starts
with the line number of the specified line. If two line ids are specified, execution
begins with the second line specified.

214

File Storage
Storing and Retrieving Programs

In effect, GET performs a SCRATCH V operation on the new program, whereas
LINK performs a CONT (continue) operation, involving no initialization of vari-
ables.

NOTE: ERROR 18 occurring during a GET, LINK or MERGE operation indicates that a line being
entered into memory is too long to be accepted (512 characters maximum).

The RESAVE Statement

A program stored in a special data file can be loaded into memory and edited. It
can then be resaved into the same file using the RESAVE statement. Any data
RESAVE will purge and overwrite data already in the specified file.

When no line ids are specified, the entire program is saved. When oneline id is
specified, the program is saved from that line to the end. When two line ids are
specified, that block of lines is saved.

NOTE: The words “special data file” refer to a file that contains information on the length of
records, the number of records currently in the file, and the maximum number of records
defined for the file.

NOTE: The STORE and LOAD operations are faster than SAVE and GET. STOREd programs are
already coded in an internal format, while SAVEd programs must be coded before they can
be executed.

The MERGE Statement

The MERGE statement takes program lines from a data (.DATA) file and posi-
tions them in memory, either in front of the program currently there, between con-
secutive lines in the program currently there, or behind the program currently
there.

 MERGEfile spec [,line id [,line id]]

If the first line id is specified, the program lines in the specified file are renum-
bered beginning with that line. The spacing between renumbered lines remains the
same. The secondline id specifies where program execution should begin.

To further explain the MERGE statement, suppose you have two files
(OLD.DATA and NEW.DATA) and the line numbers in these files are as follows:

RESAVE

RE-SAVE

file spec ,line id ,line id[][]

215

File Storage
Storing and Retrieving Programs

OLD.DATA NEW.DATA
1 10
2 20
3 30

Listed below are three examples using the sample files. Each example shows a
different MERGE statement and its result.

GET ”OLD” GET ”OLD” GET ”NEW”
MERGE ”NEW” MERGE ”NEW”,100 MERGE ”OLD”,21

Result: Result: Result:
1 1 10
2 2 20
3 3 21
10 100 22
20 110 23
30 120 30

NOTE: ERROR 18 occurring during a GET, LINK or MERGE operation indicates that a line being
entered into memory is too long to be accepted (512 characters maximum).

216

File Storage
Storaging and Retrieving Data

Storaging and Retrieving Data

In addition to storing program lines, files are used to store collections of data that
are too large to be contained conveniently in DATA statements in your program.
These files have the extension .DATA and throughout this manual are referred to
as data files. Data files are often accessed by more than one program.

The use of data files involves these six operations which are explained in detail
later in this section:

1 A data file must be CREATEd by specifying the file name and size. You may also spec-
ify on what volume the data file should be created.

2 A data file must be opened using the ASSIGN statement. This gives your program ac-
cess to the data file and assigns a number to that data file. The file number is then used
throughout a program to refer to that particular data file.

3 Data is put into the file via the PRINT statement.

4 Data is copied from the file into assigned storage areas in a program (variables or ar-
rays) via the READ statement.

5 Closing a data file indicates that your program has finished using that file. The data re-
mains in the file for future use.

6 You can PURGE a data file when the data in that file is no longer required.

217

File Storage
Creating a Data File

Creating a Data File

The CREATE statement is used to create a data file. Syntax for this statement is as
follows:

 [F]CREATEfile spec ,number of defined records [,record lenght]

Therecord length is a numeric expression specifying the length of logical records
in bytes and is rounded up to an even integer. If it is not specified, a record length
of 256-bytes is assumed.

Thenumber of defined records and therecord length can be numeric expressions
in the range 0 to 999999.

On the HP 9000 Series 800, a value greater than zero fornumber of defined
records creates a special data file (one containing header information). A value of
zero fornumber of defined records creates a regular data file, in other words an
ASCII text file with no header information. Note, however, that in this case you
cannot specify a record length.

On the HP 260, if thenumber of defined records is zero, no data file is generated
andERROR 67 is returned.

In contrast to HP BASIC/260, the Eloquence statements FCREATE and CREATE
are identical. Neither of them generates an end-of-file (EOF) marker.

Two examples of the CREATE statement are listed here:

CREATE ”DATA”,0

Creates a regular data file

CREATE ”DATA”,10

Creates a special data file

218

File Storage
Opening a Data File

Opening a Data File

Data files must be opened before they can be accessed. Each file is opened and
assigned a file number with the ASSIGN statement. Syntax for this statement is as
follows:

There is also a statement XASSIGN, which can ASSIGN a file with no DATA
extension. See below.

The ASSIGN statement sets up an internal table of file numbers to be used with
the PRINT# and READ# statements. The file table has room for 20 entries, allow-
ing up to 20 files to be open for each user, but maximal 10 files in a segment. One
data file can be assigned up to seven file numbers. The assignment table remains
in effect until a new program is loaded or run, or until a SCRATCH, SCRATCH P,
STOP, or END is executed. See page 237 , later in this chapter, for more details.
Thefile number is a numeric expression; its range is 1 through 10.

The optionalreturn variable can be a simple numeric variable or array element
and is set after execution to indicate various results. Its value is used to check for
errors. If noreturn variable is specified, an error occurs if the file is not found or is
the wrong type. Possible values returned by thereturn variable are listed and
explained in the following table:

Here are some examples of how to use the ASSIGN statement:

Table 12 Comparison of Data Access Methods

Return Variable Meaning

0 File available, assignment complete.

1 File not found (same as error 56).

2 File is protected.

4 Access error (errors 91 through 93).

5 Other error.

ASSIGN
file specTO# file number

#file numberTO file spec

,return variable[] ;class list[]

219

File Storage
Opening a Data File

100 ASSIGN #1 TO ”DATA”
110 ASSIGN ”Scores” TO #4,Return
120 ASSIGN ”Scores” TO #5
130 ASSIGN #2 TO ”Poker,Games”
140 ASSIGN #3 TO ”Totals:F2,6,1”

Line 110 illustrates areturn variable. Lines 110 and 120 show that a file can be
assigned more than once. Lines 130 and 140 show that thefile spec can include
either avolume label (Games) or aunit spec (F2,6,1).

The optionalclass list parameter provides flexibility in determining the type of
file access. The following class words are available—EXCLUSIVE, UPDATE,
READONLY, or APPEND.

Only one of the three words can be used at a time. Thus, if EXCLUSIVE is speci-
fied, UPDATE or READONLY cannot be used. To explain further, the following
statement assigns the file named PAYROL to file number 1 and specifies read-
only access:

100 ASSIGN #1 TO ”PAYROL”;READONLY

EXCLUSIVE means that only one access may exist to the file anywhere in the
system, but the same process can assign the file more than once. The file may not
be assigned elsewhere; if anyone attempts this, an error occurs. Once a file has
been assigned in exclusive mode, any attempt by the current program, or any
other user’s program, to assign the file results in an error. If noclass list is speci-
fied, EXCLUSIVE is assumed. READ# and PRINT# statements may be done on
the file without regard to locking. LOCK# and UNLOCK# are ignored if executed
on a file assigned to exclusive mode. SORT workfiles must be assigned in exclu-
sive mode.

If UPDATE is specified, shared access is granted to the data file. The ASSIGN
fails, however, if there are any other references to the data file in either read-only
or exclusive mode. Once a file has been assigned in update mode, READ# opera-
tions may be done. In order to PRINT to the file, however, the LOCK# statement
must be used to gain write access. The LOCK# statement causes an error if the file
is already locked by the current program through another reference.

If READONLY is specified, shared read access is granted to the file. The ASSIGN
fails if there are any other references to the file in either update or exclusive mode.
Once a file has been assigned in read-only mode, READ# operations may be
done. There is no way to write to a data file assigned to read-only mode. The
LOCK# and UNLOCK# statements are ignored if executed on a file assigned to
read-only mode. The GET, LINK, and MERGE statements require read-only
access to the file being accessed.

TheAPPEND file mode causes all output to a HP-UX sequential file automatically
appended to the end of the file.

220

File Storage
Opening a Data File

If a file is opened inAPPEND mode, it will behave different:

• If file does not exist, it will be created upon ASSIGN with a zero size.

• File isnot locked exclusive. Because all output will automatically appended to the end
of the file, it’s not necessary to protect file contents by locking it. If you need exclusive
access, you may still use theLOCK # andUNLOCK # statements.

For example:

ASSIGN #1 TO "Logfile";APPEND
PRINT #1;DATE$;TIME$;"Message"
...

The example code above will cause output appended to Logfile. If Logfile does
not exist, it will be created.

Note that in order to guarantee that the data being read from a data file is correct,
the file must be LOCKed. If not, the data may be old (since data files do not use
the sophisticated buffering scheme employed by Eloquence DBMS). It is also
possible that the data on the disk has been only partially updated by the user who
has the data file locked. In this case, an actual error may occur during a read. So,
unless some special agreement exists between programs altering a file in update
mode, it is best to also lock the file before reading.

The XASSIGN statement assigns a file of the type specified. This could be any
hp260 file type (DATA, PROG or FORM). If the type is OTHR,no extension will
be added to the filename.

 XASSIGN #file name TO file name; file type [,assign_options]

Example:

 XASSIGN #1 TO ”/etc/passwd”;OTHR;READ ONLY

will assign #1 to

 /etc/passwd

Data Pointers

A record pointer is automatically maintained for each opened data file. This
pointer is used to specify at which record data storage or retrieval begins in the
data file. A word pointer is also maintained for each current record. It points to the
first word of the next data item to be accessed in the record.

221

File Storage
Opening a Data File

After executing an ASSIGN statement, the record pointer is positioned at the
beginning of the first logical record in a data file. The word pointer is then incre-
mented through the record as data items are stored (PRINT#) or retrieved
(READ#). A new ASSIGN statement obsoletes the previous one and resets all
pointers for the specified file.

The current position of each pointer can be found by using the REC (record) and
WRD (word) functions, as described later in this chapter.

Converting a Text File

The ‘convrt’ program converts text files from HP-260 format into HP-UX ASCII
format. The resulting file is assigned the same name as the HP-260 file plus the
extension ’.txt’ in the current directory. If the file already has an extension, it will
be overwritten to ’.txt’.

The syntax is as follows:

 convrt [options]file [file]

Options
-v Detailed listing of procedures

-s Write to stdout

file Show file or files to be converted.

Example

To convert text files dbmap1.DATA und dbmap2.DATA into HP-UX format:

 convrt -v dbmap*.DATA

NOTE: The ‘convrt’ program converts text files, or parts of a file containing text until non-text data
is detected.

222

File Storage
Serial Access

Serial Access

Serial access is used to store or retrieve data items one after the other, without
regard to logical record bounds. For each data file opened, the data pointers keep
track of the data item currently being accessed. As you store or retrieve data, the
pointers move serially forward through the data file.

The Serial PRINT# Statement

The serial PRINT# statement records values onto the specified file from the speci-
fied variables or strings. Syntax for this statement is as follows:

Thedata list is a collection of items separated by commas. The items can be vari-
ables, array identifiers, and numeric or string expressions. Including the optional
END causes an EOF mark to be printed at the end of the data; otherwise, an EOR
mark is placed after the data list is printed.

Printing begins at the position of the data pointers (which is after the data item
most recently stored or retrieved) or at the beginning of the file if nothing has been
stored or retrieved. The record pointer can also be repositioned to the beginning of
the file (see page 231).

Here is a simple program which creates a file named CLASS and prints the names
and grades of five students:

10 CREATE ”CLASS”,1
20 ASSIGN #1 TO ”CLASS”
30 FOR I=1 TO 5
40 INPUT ”STUDENT’S NAME?”;N$,”TEST SCORE?”;S
50 PRINT #1;N$,S
60 NEXT I
70 PRINT #1;END
80 END

Line 50 prints students’ names and grades, alternately, in the file. Line 70 places
an EOF mark after the five sets of data are printed. The EOF prevents reading data
beyond its position.

PRINT# file number;
data list [,END]

END

223

File Storage
Serial Access

When printing a long string, it might possibly be too long to be contained in one
logical record. In this case, the string is automatically broken up and stored into a
series of logical records. This requires an additional two words each time the
string crosses over into another logical record. The parts of the string are identi-
fied at the first record, intermediate records, and the last record.

Data can be stored using the PRINT# statement in a file created with the SAVE
statement. SAVE, in effect, performs a serial print into a file.

Here are two examples:

100 PRINT #3;Apples,Bananas,Carrots
110 PRINT #3;Donuts,Eggs(*)

These two statements store values for all five variables into file#3. The EOR
which was placed after the data when line 100 was executed is overwritten when
line 110 is executed. Another EOR is printed after the data in line 110. Remember,
an EOR signifies that there is no more data between the data pointers and the end
of the record.

The serial PRINT# statement can also be used to generate program lines into a
file. Such a file can be retrieved with GET.

Here are two examples:

50 P$=”COUNTR”
60 CREATE P$,3,50
70 ASSIGN #1 TO P$
80 PRINT #1;”10 FOR I=1 TO 10”,”20 PRINT I”,”30 NEXT I”,”40 END”
90 GET P$,10,10

RUN
1
2
3
4
5
6
7
8
9
10

Executing LIST produces:

10 FOR I=1 TO 10
20 PRINT I
30 NEXT I
40 END

Below you find two examples concerning printing of User Defined Type vari-
ables.

224

File Storage
Serial Access

In the example below, the Comment$ member variable from the Phone1 vari-
able is PRINTed.

Phone1.Comment$="*Fancy Comment*"

PRINT #3;Phone1.Comment$

In addition to accessing single variables, you can specify the whole variable at
once.

The example below prints all member variables of Phone1:

PRINT #3;STRUCT Phone1

The Serial READ# Statement

The serial READ# statement retrieves values for variables and strings of charac-
ters from the specified file. Syntax for this statement is as follows:

 READ#file number; variable list

Before you can use data which has been stored in a data file with a PRINT# state-
ment, you must read the data back into the computer memory. The data is not
erased from the file, it is merely copied into the variables specified in the same
order in which it was stored with the PRINT# statement. The User Defined Types
can be used in the same way as with PRINT#. Variables do not have to have the
same names specified in the PRINT# statement. Reading begins after the last item
printed or read on the specified file. To begin reading from the beginning of the
file, you must reposition the record pointer (see page 231) or do another
ASSIGN.

As an example, the data printed in the previous example in a file named CLASS
can be read by using this program:

10 ASSIGN #1 TO ”CLASS”
20 PRINT ” NAME GRADE”
30 FOR I=1 TO 5
40 READ #1;Name$,Score
50 PRINT Name$,Score
60 NEXT I
70 END

Notice that the serial READ# statement must specify the types of data (data ele-
ments or string variable) in the order in which they were originally stored in the
file. Line 40 reads a string variable and then a numeric variable. This program can
run only when the order of the data on file is known. Here is the printout:

NAME GRADE

Charlie Brown 79
Casey Jones 99

225

File Storage
Serial Access

Sean Jackson 91
Jack Allison 83
Sam Amigo 95

The variables into which you read data items need not have the same names used
when the items were printed on the file. Although the variable name changes
(from N$ and S when stored, to Name$ and Score when retrieved), the order in
which the two data types are accessed is the same.

When a serial READ# statement encounters the EOF mark previously placed by
the last PRINT# statement, the program ends and an error indicates the end of the
file. The program can be written to run without displaying an error by using the
ON END# statement, described later in this chapter.

Positioning the Record Pointer

It is often necessary to position the record pointer to the beginning of a specific
record in a file before executing a serial READ# statement. This is done by using
only file number andrecord number parameters in a direct READ# statement:

 READ# file number ,record number

A serial PRINT# or READ# statement can then be executed to access the begin-
ning of the specified record, rather than the beginning of only the first record in
the file.

To see how this works, first use the next program to store consecutive values
beginning from the 8th record of a file named NUMBERS:

10 CREATE ”NUMBERS”,15
20 ASSIGN #1 TO ”NUMBERS”
30 READ #1,8
40 FOR Value=1 TO 300
50 PRINT #1;Value
60 NEXT Value
70 END

The ASSIGN statement sets the record pointer to the beginning of the first record
in the file. The pointer is then repositioned to the beginning of the eighth record
by the READ# statement. The FORNEXT and PRINT statements fill the file with
the numbers 1 through 300, starting at the eighth record.

Now use the following program to read and display the data, beginning at
record 14:

10 DIM A(7)
20 ASSIGN #1 TO ”NUMBERS”
30 READ #1,14
40 FOR I=1 TO 12
50 READ #1;A(*)
60 DISP A(*)

226

File Storage
Serial Access

70 NEXT I
80 END

RUN
193 194 195 196 197 198 199 200 record 14
201 202 203 204 205 206 207 208
209 210 211 212 213 214 215 216
217 218 219 220 221 222 223 224

225 226 227 228 229 230 231 232 record 15
233 234 235 236 237 238 239 240
241 242 243 244 245 246 247 248
249 250 251 252 253 254 255 256

257 258 259 260 261 262 263 264 record 16
265 266 267 268 269 270 271 272
273 274 275 276 277 278 279 280
281 282 283 284 285 286 287 288

The ASSIGN statement automatically sets the record pointer to the beginning of
the first record. The pointer is then repositioned to the beginning of record 14 by
line 30. The serial READ# statement begins reading data from that point on.

NOTE: Reading record 17 causes an error if more than 12 values are read. Record 17 contains only
12 values (289–300).

Since each real-precision value uses 8 bytes of memory, 32 values can be printed
into a 256-byte record. On the file NUMBERS, for example, the following values
are stored on these corresponding records:

Table 13 Comparison of Data Access Methods

Record No. Full-precision Values

1 through 7 (none)

8 1 through 32

9 33 through 64

10 65 through 96

11 97 through 128

12 129 through 160

13 161 through 192

14 193 through 224

15 225 through 256

16 257 through 288

227

File Storage
Serial Access

Data read must correspond to the type (numeric or string) that was printed. How-
ever, a numeric data item need not be one of the same precision. Precision is auto-
matically converted. You can also print an array and read back simple variables or
other arrays and vice versa.

17 289 through 300

Table 13 Comparison of Data Access Methods

Record No. Full-precision Values

228

File Storage
Direct Access

Direct Access

Direct file access is used to store or retrieve data items from one logical record at
a time.

The Direct PRINT# Statement

The direct PRINT# statement is nearly identical to the serial PRINT# statement
except that it prints data onto the file starting at the beginning of a specified
record. Syntax for this statement is as follows:

Thedata list is identical to that used in the serial PRINT# statement. The direct
PRINT# statement prints data into the specified record of the file. Printing starts at
the beginning of the specified record. Any previous data in the record is overwrit-
ten. Specifying END causes an EOF mark to be printed after the data (first syntax)
or at the beginning of the record (second syntax). When END is not used, an EOR
(end-of-record) mark is placed after the last item printed. The ON END# state-
ment and the TYP function can be used to detect EOFs, as shown later in this
chapter.

The program below prints consecutive numbers into each odd-numbered record of
a 10-record file named TEN.

10 Data=1
20 ASSIGN #1 TO ”TEN”
30 FOR Record=1 TO 10 STEP 2
40 PRINT #1,Record;Data
50 Data=Data+1
60 NEXT Record
70 END

PRINT# file number, record number ;
data list ,END[]

END

229

File Storage
Direct Access

By printing in specific records of the file TEN, previous data in those records is
erased and replaced by the new data. File TEN now contains the following:

An EOR is automatically added at the end of each odd-numbered record.

When neither the data list nor END are used in a direct PRINT# statement, it
erases the contents of the specified record and fills it with EORs. For example, the
following program erases every third record of file TEN, which was opened and
accessed in the previous program:

100 ASSIGN #1 TO ”TEN”
110 FOR Erase=1 TO 10 STEP 3
120 PRINT #1,Erase
130 NEXT Erase
140 END

Table 14 Comparison of Data Access Methods

Record No. Data

1 1 (EOR)

2 (Null)

3 2 (EOR)

4 (Null)

5 3 (EOR)

6 (Null)

7 4 (EOR)

8 (Null)

9 5(EOR)

10 (Nothing)

230

File Storage
Direct Access

The information now left in the file is as follows:

When an EOR is detected by a serial READ# statement, it skips over the entire
record and attempts to access data in the next record. You can use a direct
PRINT# statement to write over the EOR marks.

When the data list is omitted from a PRINT# statement, as shown in the following
statement, an EOF is placed at the beginning of the specified record:

 PRINT#file number ,record ;END

If a serial or direct READ# attempts to read from that record, reading the EOF ter-
minates the operation.

The Direct READ# Statement

The direct READ# statement is like the serial READ# statement except that read-
ing of data into variables begins at the beginning of the specified record and will
not go past an EOR mark. Like the serial READ# statement, the direct READ#
statement will not read past an EOF mark. Syntax for the direct READ# statement
is as follows:

 READ#file number ,record number [;variable list]

Table 15 Comparison of Data Access Methods

Record No. Data

1 (EORs)

2 (Null)

3 2 (EOR)

4 (Null)

5 3 (EOR)

6 (Null)

7 (EORs)

8 (Null)

9 5(EOR)

10 (Nothing)

231

File Storage
Direct Access

As with serial READ# statements, the variables into which you read data items do
not have to be the same variables used to print the data items on the record, but
they must be the same type (numeric or string) and in the same order.

If the number of items making up the data list is greater than the data in the
defined record, however, an EOR error occurs.

The following program reads the data printed in the 5th and 9th records of the pre-
viously-used file named TEN:

200 ASSIGN #1 TO ”TEN”
210 READ #1,5;R5
220 READ #1,9;R9
230 PRINT ”Data in record 5 =”;R5
240 PRINT ”Data in record 9 =”;R9
250 END

Data in recor d 5 = 3
Data in recor d 9 = 5

The program reads the data from records 5 and 9 and outputs the data on the stan-
dard printer.

Repositioning the Record Pointer

If the variable list is omitted from a direct READ#, the pointer is repositioned to
the beginning of the specified record. To reposition the pointer to the beginning of
a file (for use with serial data access) execute the following:

 READ#file number ,1

232

File Storage
Direct Word Access

Direct Word Access

Direct word access allows you to begin printing or reading data at any given word
within a specified record of a data file. This enables you to define subrecords
within each logical record.

The Direct-Word PRINT# Statement

 PRINT#file number ,record number,word pointer [;data list[,END]]

The direct-word PRINT# statement stores data items in specific records of a file.
The data is written to the specificfile number andrecord number, starting at the
word addressed byword pointer. Theword pointer can be an integer expression in
the range 1 through (bytes-per-record/2)+1. If theword pointer is exactly one
greater than the highest word in the record, that word pointer will address the first
word of the next record.

Example: If there are 256 bytes per record, and the word pointer is 129, the fol-
lowing would be equivalent:

 PRINT #1,1,129
 PRINT #1,2,1

The optional END parameter places an EOF after the last data item printed. When
END is not used, the remainder of the record is left unchanged. Remember that
ON END# and TYP can be used to detect EOFs, as explained later in this chapter.

Listed below is an example program which opens a 1,000-record file named
STOCK. Each record can contain 256 bytes of data about each part to be stocked.
For now the program enters only four items—part number, description, unit cost,
and current quantity on hand.

10 !
20 ! OPEN NEW STOCK FILE
30 !
40 CREATE ”STOCK”,1000
50 DIM Part$[20],Desc$[20]
60 ASSIGN #1 TO ”STOCK”
70 INPUT ”TODAY’S DATE:”;Date$
80 PRINT LIN(5),SPA(30),”PARTS SET UP FOR”,Date$
90 PRINT ”PART NO. DESCRIPTION”,TAB(40),”UNIT COST QTY. ON H
AND”,LIN(2)
100 FOR Record=1 TO 1000
110 INPUT ”PART NUMBER?”;Part$[1,20]
120 IF UPC$(Part$[1,4])=”DONE” THEN 220
130 INPUT ”DESCRIPTION?”;Desc$[1,20]
140 INPUT ”UNIT COST?”;Cost
150 INPUT ”INITIAL QUANTITY?”;Qty
160 PRINT #1,Record,29;Qty

233

File Storage
Direct Word Access

170 PRINT #1,Record,13;Desc$
180 PRINT #1,Record,25;Cost
190 PRINT #1,Record,1;Part$
200 PRINT Part$,Desc$;TAB(35);Cost,Qty
210 NEXT Record
220 PRINT ”DONE”,LIN(5)
230 END

Lines 80 and 90 print headings for a table of input data. The FOR-NEXT loop
inputs four items to be printed in each record, prints each item into subrecord
within the currently-specified record, and outputs the data on the standard printer.
Line 120 exits the loop when the operator entersDONE (upper or lower case) for a
part number.

Notice that the word pointer parameter within each PRINT# specifies the first
word for each subrecord.

These four items use only 64 bytes of each defined record; there are still 192 bytes
available in each record for extra data.

It is important to know the exact length of each string variable printed using
direct-word PRINT#. For example, lines 110 and 130 in the last program generate
20-character strings, regardless of the number of characters input. This, in turn,
ensures that 20-character (20 byte) subrecords will be printed in lines 170 and
190. If the subscripts were not used in the INPUT statements, the first two sub-
records printed in each logical record would vary in size, depending on the current
string length.

The Direct-Word READ# Statement

 READ#file number ,record number ,word pointer [;data list]

The direct-word READ# statement reads numbers and strings into variables from
a specified record, starting from a specified word.

As with serial and direct READ# statements, the variables into which you read
data items do not need to have the same names from which you printed the data
items on the record, but they must be the same type and the same order as the
originals. When the data list is not used, the direct-word READ# resets the record
pointer and word pointer to the specified record and word.

The previous example program opened a file to hold information on parts to be
stored. The next program opens a file named ORDRPT (for order-point) and then
searches the file STOCK for any item with a current quantity less than 10 (lines
120 through 150). When such an item is found, lines 160 through 180 read the
part number, print the part number and quantity in file ORDRPT, and output the
same data on the standard printer:

234

File Storage
Direct Word Access

10 !
20 ! PRINT ORDER-POINT REPORT
30 !
40 CREATE ”ORDRPT”,1000
50 DIM Part$[20],Desc$[20]
60 ASSIGN #1 TO ”STOCK”
70 ASSIGN #2 TO ”ORDRPT”
80 INPUT ”TODAY’S DATE:”;Date$
90 PRINTER IS 0
100 PRINT LIN(5),SPA(20),”PARTS TO REORDER ON ”,Date$
110 PRINT ”PART NO. DESCRIPTION QTY. ON HAND”,LIN(2)
120 FOR Part=1 TO 1000
130 READ #1,Part,29;Qty
140 IF Qty>=10 THEN Stokok
150 ! 10 or more items so no re-ordering needed.
160 Rd:READ #1,Part,1;Part$,Desc$
170 PRINT #2;Part$,Qty
180 PRINT Part$,Desc$,Qty
190 Stokok:!
200 NEXT Part
210 PRINT ”DONE”,LIN(5)
220 END

Notice that logical READ# (lines 130 and 160) enables you to read only the items
required from a record, thus saving memory space and program execution time.
Data is printed into file ORDRPT serially, since it need not be accessed separately.

As another example of direct-word access, the next program can be used to update
the cost and quantity data for each record of file STOCK used in the previous pro-
grams. As in the first program, this program exits the input loop when the operator
inputs "DONE" for a part number.

After the operator enters each set of data, the subroutineSearch looks for the
appropriate record in the file. After the record is found, lines 160 and 180 print the
new cost and total quantity into that record. Line 190 then outputs the new data on
the standard printer.

10 !
20 ! UPDATE STOCK FILE
30 !
40 DIM Part$[20], Desc$[20], Stock$[20]
50 ASSIGN #1 TO ”STOCK”
60 INPUT ”Today’s Date: ”; Date$
70 PRINTER IS 0
80 PRINT LIN(5), SPA(15); ”Parts Received On ”; Date$
90 PRINT ”PART NO. COST QTY. RECEIVED QTY. ON HA
ND”, LIN(1)
100 FOR Part=1 TO 1000
110 In:INPUT ”PART NUMBER:”;Part$[1,20]
120 IF UPC$(Part$[1,4])=”DONE” THEN Done
130 INPUT ”QUANTITY RECEIVED:”; Qty1
140 INPUT ”UNIT COST:”; Cost1
150 GOTO Search
160 Pr:PRINT #1, Record, 25; Cost1
170 READ #1, Record, 29; Qty
180 PRINT #1,Part,29; Qty+Qty1

235

File Storage
Direct Word Access

190 PRINT Part$, Cost1, Qty, Qty+Qty1
200 NEXT Part
210 Done: PRINT ”DONE”, LIN(5)
220 STOP
230 Search: ! Search for record to update
240 FOR Record=1 TO 1000
250 READ #1, Record,1;Stock$
260 IF Stock$=Part$ then Pr
270 NEXT Record
280 PRINT ”!!PART NOT ON FILE!!”
290 WAIT 2000
300 GOTO In
310 END

236

File Storage
Storing and Retrieving Arrays

Storing and Retrieving Arrays

Entire arrays can be stored and retrieved by using the array identifier in PRINT#
and READ# statements. The syntax for each statement, using direct access, is as
follows:

 PRINT#file number [,record number] ;array name(*) [,array name(*)][,END]

 READ#file number [,record number] ;array name(*) [,array name(*)]

Arrays are stored and retrieved element by element without regard to dimension-
ality.

For example:

10 OPTION BASE 1
20 PRINTER IS 0
30 DIM A(3),B(3),C(6)
40 A(1)=A(2)=A(3)=65
50 B(1)=B(2)=B(3)=66
60 ASSIGN #1 TO ”TEN”
70 PRINT #1,1;A(*),B(*)
80 READ #1,1;C(*)
90 PRINT C(*);
100 END

65 65 65 66 66 66

Also refer to the MAT PRINT# and MAT READ# statements, covered in
page 297 .

237

File Storage
Closing a File

Closing a File

The ASSIGN statement is also used to close a file. Any subsequent attempts to
access that file number result in an error. Syntax of the ASSIGN statement to
close a data file is as follows:

For example, this statement closes file number 1:

310 ASSIGN * TO #1

A file is also automatically closed by executing the following operations:

* All files opened in subprogram, but not passed via COM or parameters, are
closed.

Table 16 File Table Reset Conditions

Operation Files Closed (X) All Files Closed (X) All
Except COM

LOAD X

GET X

RUN X

STOP X

END X

SCRATCH X

SCRATCH V X

SCRATCH P X

SCRATCH A X

SCRATCH C X

Subprogram Return*

ASSIGN
* TO # file number

file numberTO *

238

File Storage
Purging a File

Purging a File

The PURGE statement erases any DATA file by removing its name from the name
table in the directory.

 PURGEfile spec

The disk space used by the file is then available for other uses. For example, the
statement to follow purges a file:

320 PURGE ”DATA”

NOTE: Use PURGE with care since all data in a purged file is lost.

NOTE: You can purge an opened file if it belongs to your own process.

The XPURGE statement purges a file of given type. Normally, using PURGE, to
remove a file which is not of type DATA, you have to enter a statement like this:

 COMMAND “!rm “&MAPVOL$(”CODE”)&”WILLI.PROG”

Using XPURGE you would simply enter:

 XPURGE “WILLI,CODE”;PROG

If you omit thetype, it defaults to DATA. So

 PURGE ”WF1”

and

 XPURGE ”WF1”

are equivalent.

If type is OTHR,no extension will be added to the filename, e.g.

 XPURGE ”WILLI;OTHR

will purge file WILLI.

239

File Storage
File Storage Functions

File Storage Functions

The TYP Function

The TYP (type) function is used to determine what type of data is to be accessed
by READ#.

 TYP (file number)

The possible values returned and their meanings are shown in the following table:

If the file number is negative, the record and word pointers are not advanced. If it
is positive, however, the pointers move until positioned at something other than an
EOR mark. In effect, a negative file number causes a direct read. A positive file
number causes a serial read, ignoring EOR marks.

Table 17 File Table Reset Conditions

Value Meaning

0 Unrecognized type.

1 Real-precision number.

2 Total string.

3 End-of-file (EOF) mark.

4 End-of-record (EOR) mark.

5 Integer-precision number.

6 Short-precision number.

7 Dinteger

8 First part of a string.

9 Intermediate part of a string.

10 Last part of a string.

11 HP-UX text file.

240

File Storage
File Storage Functions

The next program is used to print (serially) various types of data on a new file
named TYPE?:

10 CREATE ”TYPE?”,5
20 ASSIGN ”TYPE?” TO #1
30 INTEGER Int
40 SHORT Short
50 Real=1E99
60 String$=”STRING”
70 Int=12345
80 Short=654321
90 PRINT #1;Real,String$,Int,Short
100 END

Now run this program which uses the TYP function to identify each data item,
and then stores it into the appropriate type of variable:

10 ASSIGN #1 TO ”TYPE?”
20 INTEGER Int
30 SHORT Short
40 READ #1,1
50 Type: !
60 ON TYP(-1) GOTO Real,String,Eof,Eor,Integer,Short
70 Real: !
80 READ #1;Real
90 PRINT Real,”is a real-precision value.”
100 GOTO Type
110 String: !
120 READ #1;String$
130 PRINT String$,”is a string variable.”
140 GOTO Type
150 Eof: !
160 PRINT ”EOF mark is next.”
170 STOP
180 Eor: !
190 PRINT ”EOR mark is next.”
200 STOP
210 Integer: !
220 READ #1;Int
230 PRINT Int,”is an integer-precision value.”
240 GOTO Type
250 Short: !
260 READ #1;Short
270 PRINT Short,”is a short-precision value.”
280 GOTO Type
290 END

Line 40 sets the record pointer to record 1 of file TYPE?. The computed GOTO
statement (line 60) branches the program to one of six labels, depending upon the
value returned by TYP(-1). This statement is executed before the READ# to
determine which type of data is to be read next. Here is the printout:

1.00000000000E+99 is a real-precision value.
STRING is a string variable.

12345 is an integer-precision value.
654321 is a short-precision value.

EOR mark is next.

241

File Storage
File Storage Functions

Notice that if the record pointer had been set to any other record of file TYPE?
(for example, READ#1,4) the TYP function would return 3, indicating an EOF
mark. Remember that each record is filled with EOFs when it is CREATEd; the
EOFs are replaced by data via PRINT# statements.

The SIZE Function

The SIZE function returns the size of the specified file.

 SIZE (file number)

A positive file number, for all files except HP-UX text files, returns the file size
expressed in logical records. For HP-UX text files (TYP 11), the file size is
expressed in bytes.

A negative file number, for all files except HP-UX files, returns the logical record
size in words (one word equals two bytes). For HP-UX text files, a negative file
number returns the number 1.

The REC Function

The REC (record) function returns the current position of the data pointer within
the specified file.

 REC (file number)

A negative file number always returns 0.

The WRD Function

The WRD (word) function returns the current position of the word pointer for the
specified file.

 WRD (file number)

A value of 1 indicates the first word of the record.

NOTE: The WRD function cannot be used on an regular text file (TYP 11). Doing so will result in
error 69 (”operation not allowed for this file type”).

NOTE: The AVAIL and HOLE functions are no longer valid.

242

File Storage
File Storage Functions

The FNAME$ Function

The keyword

 FNAME$ (expr)

returns the file name associated with the given file number.

For example:

ASSIGN #1 TO"foo,TMP"
DISP FNAME$(1)

-> /tmp/foo.DATA

An absolute path-name is returned, depending on the platform.

243

File Storage
Trapping EOR and EOF Conditions

Trapping EOR and EOF Conditions

An error usually results from encountering one of two conditions—a logical or
physical EOF during READ# or an EOR during direct READ#. The ON END#
statement can detect those errors and cause a branching operation.

In some of the previous programs, for example,ERROR 59 appears after the last
item is accessed, telling you that the end of file has been reached. This error mes-
sage can be avoided by including an ON END# statement in the program.

Here is a modified version of the example program used when “Repositioning the
Record Pointer”. The program ends when the end of file is reached.

10 CREATE ”DATA15”,15
20 ASSIGN #1 TO ”DATA15”
30 READ #1,8
40 ON END #1 GOTO Exit
50 FOR V=1 TO 50
60 PRINT #1;V
70 NEXT V
80 Exit: ! end of file found.
90 PRINT ”END OF DATA!”
100 END

As another example, the next program prints four data items into each record of
files DATA.1 and DATA.2. When DATA.1 is filled, reading the EOF mark causes
a branch to the subroutine Newfile, which opens file DATA.2 for the rest of the
PRINT# routine.

10 CREATE ”DATA.1”,20
20 CREATE ”DATA.2”,20
30 ASSIGN #1 TO ”DATA.1”
40 ON END #1 GOSUB Newfile
50 FOR R=1 TO 100
60 PRINT #1;R,R^2,R^3,R^4
70 NEXT R
80 STOP
90 Newfile: ! open new file.
100 ASSIGN #1 TO ”DATA.2”
110 RETURN
120 END

ON END# file number

GOTO line id

GOSUB line id

CALL subprogram name

244

File Storage
Trapping EOR and EOF Conditions

ON END is disabled during INPUT, LINPUT and EDIT statements. ON END can

interrupt ON ERROR and ON KEY routines. ON END cannot be executed from

the keyboard.

An ON END is deactivated with the OFF END# statement:

 OFF END#file number

NOTE: Under the HP 260 environment the ON END # command could be used with the PRINT #
statement to signify when a file was filled. In the HP-UX environment files are dynamic,
rather than static, and printing will continue until the entire disk is full if a limit is not
written into the program. Therefore, make sure you change any converted HP 260 programs
that make use of ON END # and PRINT #, in this way.

245

File Storage
Data Storage Requirements

Data Storage Requirements

When storing data, it is possible to optimize the use of your storage medium by
minimizing the amount of unused space. The best way to do this is to create your
files so they are suited to the amount of data you wish to store and are suited to
storage medium capacities.

The following tables indicate how many bytes are needed to store each type of
variable.

Simple Variables

Real precision 8 bytes.

Short precision 4 bytes.

Integer precision4 bytes.

Dinteger 6 bytes.

String 1 byte per character (rounded to an even integer) + 4 bytes (+ 4
additional bytes each time string crosses into a new defined
record).

Array Variables

Real precision 8 bytes x dimensioned number of elements.

Short precision 4 bytes x dimensioned number of elements.

Integer precision4 bytes x dimensioned number of elements.

String 4 bytes per element + total needed for all strings as defined
above.

By summing up how many bytes of storage your data requires, you can tailor your
file and logical record lengths to suit your needs and minimize waste.

246

File Storage
Multi-User File Protection

Multi-User File Protection

The LOCK# statement restricts data file access to the task which executes it.

 LOCK#file number [,wait variable]

The optional wait parameter indicates whether the computer should wait for
access to the specified file while it is already locked via another task. If the value
of the wait parameter is 0, the program will wait until the file is available
(unlocked). If the wait parameter is not 0, the LOCK# statement will be aborted if
the file is already locked. The default value is 0.

The value of the wait variable changes to 0 when the lock operation is success-
fully completed. If the lock operation is aborted, the wait variable changes to 1.

To release a data file for use by other tasks, use the UNLOCK# statement:

 UNLOCK#file number

247

File Storage
Copying a File

Copying a File

The COPY statement is used to copy information from one DATA file into
another file. Syntax for this statement is as follows:

 COPYsource file spec TO destination file spec

Execution of the COPY statement causes all records of a DATA file to be copied.
A check of the name of the destination is made; an error is given if the name is
already present. If not, a file of the same characteristics as the source file is cre-
ated. The same directory can be both source and destination.

For example, this statement copies a file named DATA1 from the current volume
to a new file named DATA2 on a volume labeled BACKUP:

160 COPY ”DATA1” TO ”DATA2,BACKUP”

The contents of a spool file, a file created by a previous printer assignment state-
ment, are dumped to an output device, such as the display or a printer, by specify-
ing only thesource file spec in a COPY statement:

 COPYsource file spec

Use of spool files is covered in page 249 .

248

File Storage
Renaming a File

Renaming a File

The RENAME statement is used to give a DATA file a different name. Syntax for
this statement is as follows:

For example:

 RENAME ”DATA1” TO ”DATA2”

Renames the file DATA1 to DATA2.

 RENAME ”DATA1” TO ”DATA2,TEST”

Renames DATA1 to DATA2 and moves it to the volume labelled TEST.

 RENAME ”DATA1” TO ”,TEST”

Moves DATA1 to the volume labelled TEST.

RENAME old file specTO
new file name

new file name[]

,volume label

249

9

Output Operations

This chapter covers audible, display, and printer output operations. How to format
printed output is also covered. The following statements are discussed in this
chapter:

PRINTER IS Defines the standard printer (the device used for all PRINT and
PRINT USING output).

SYSTEM PRINTER

250

Output Operations

IS Defines the output device for LIST, FETCH and CAT opera-
tions.

PRINT ALL IS Defines the output device for all messages normally shown on
the display.

REQUEST Reserves use of a specified device (PORT) for one process.

RELEASE Cancels any REQUEST for exclusive use of a peripheral device
(PORT) by that process.

BEEP Outputs an audible signal to the operator.

DISP* Displays text and variables.

LDISP* Like DISP, except an entire display line is used.

REFRESH ON/OFF Redraws the display.

CURSOR* Controls the display cursor and enhancements.

PRINT Outputs text and variables on the standard printer. Also, it is an
output control function used with DISP and PRINT.

LIN, PAGE, SPA and
TAB Output-control functions used with DISP and PRINT.

IMAGE Lists specifiers controlling form of items output with PRINT
USING and DISP USING.

PRINT USING References image specifiers while outputting each item to the
standard printer.

DISP USING* Uses the same field specifiers mentioned above for display out-
puts.

 * This statements are available on HP-UX platform, only.

251

Output Operations
Restrictions on the Use of ASCII Control Characters

Restrictions on the Use of ASCII Control Characters

NOTE: This function is only available on HP-UX platforms.

You can use DISPLAY FUNCTIONS to store non-printing ASCII control charac-
ters; however, be careful when outputting these control characters to a screen or
printer, while in DISPLAY FUNCTIONS mode.

If you turn on DISPLAY FUNCTIONS and then pressRETURN, the carriage-
return/line-feed character is displayed on the screen and not executed. For exam-
ple:

10 DISP ”C/r L/f” ! Display carriage-return/line-feed

You can list this line to your terminal; however, the display will show the follow-
ing:

10 DISP ”~~”

ASCII control characters are displayed as a tilde (~), if you list your program.

252

Output Operations
Selecting Output Devices

Selecting Output Devices

Information output by Eloquence takes three forms—PRINT outputs, SYSTEM
outputs, and PRINT ALL outputs. All output is automatically shown on the dis-
play screen after Eloquence is started. The display is called the default output
device. Alternately, you may specify other devices to output each type of informa-
tion by using the statements introduced here:

Printer and Port Numbers Vs. Device Addresses

Each device connected to the computer responds to a unique address. The address
is mapped to a number in a configuration file. For printers this number can be
from −2 to 7 and from 11 to 99. For ports this number can be from 11 to 20. Three
numbers are reserved, as shown in the following table; the table also shows what
devices are associated with the reserved numbers. For more details on how to con-
figure printer/ports, see the instructions in chapter 2.

Printer Number Explanation

8 Display.

9 Null device (Bit Bucket) - all output data is ignored.

10 Local printer.

Table 18 File Table Reset Conditions

Output Type Operations Affected Controlled By

PRINT PRINT, PRINT USING PRINTER IS

Eloquence SYSTEM LIST, CAT, TRACE, FETCH,
COMMAND “!OS cmd”

SYSTEM
PRINTER IS

PRINT ALL All displayed information PRINT ALL IS

253

Output Operations
Printers

Printers

System Printer

The system printer has the following characteristics:

• Accessible from every task and user.
• Supports the standard ASCII characters in the range 32 through 126 and most National

characters. (ASCII characters 32 through 126 are listed in page 391 .)

Eloquence supports the “Underline” enhancement and all “PRINT” statements.
Individual printer features can be used with the aid of the “PRINTER ISTRANS-
PARENT” option, which allows all codes to be sent to the printer.

Local Printer

NOTE: Local Printers are available with a character oriented user interface, only.

The local printer has the following characteristics:

• Printer number is 10.
• Connection to a terminal.
• Accessible from primary tasks only.

You are also provided with the “PRINTER ISTRANSPARENT” option. How-
ever, some codes (for example, 0, 5, and 127 on the HP 700/92) are stripped by
the terminal. The remaining features of the local printer are the same as for the
system printer.

All UX printers are supported with Eloquence when connected to an HP 700/92,
HP 700/94, or HP Vectra.

The PRINTER IS Statement

The PRINTER IS statement assigns the output device for PRINT and PRINT
USING operations. Refer to page 254 for information on the syntax of the
PRINTER IS statement.

The SYSTEM PRINTER IS Statement

The SYSTEM PRINTER IS statement assigns the output device for all successive
SYSTEM outputs. This includes CAT, LIST, FETCH, COMMAND “!”, single-
step, and TRACE operations. Refer to page 254 for information on the syntax of
the SYSTEM PRINTER IS statement.

254

Output Operations
Printers

The PRINT ALL IS Statement

To obtain a permanent copy of all operator and system interactions, use the
PRINT ALL IS statement to specify a device other than the display. Syntax for the
statements related to output device assignment is as follows:

 [,WIDTH] [,TRANSPARENT]

Printer number is an integer which states the number of a printer, port, or display
screen. The possible printer numbers are−2 to 99. The printer number for the dis-
play screen is 8. The printer numbers for printers and ports are assigned in the
configuration files.

Line width is a numeric expression (−1, or 20 to 264) which specifies the number
of characters per line output by PRINT and PRINT USING. If omitted, line width
assumes the previously set value. If no value was previously set or the system was
turned off and on, the line width value defaults to 80 for terminals and 132 for
other devices. Specifying−1 sets an infinite line width.

File specifier is a spool file, where all outputs are recorded in hp-ux format. For
more details, see page 292 at the end of this chapter.

Each successive PRINTER IS statement cancels the previous one. Note, however,
that the line width parameter of any future PRINT ALL IS or SYSTEM
PRINTER IS statement will also determine the line width for the current
PRINTER IS statement for that device. (This allows multiple users to each assign
their own line width to the same printer.)

NOTE: If printer number is defined as FILE in the configuration file, it is locked into the specific
eloqcore process to avoid printing conflicts.

PRINTER IS

SYSTEM PRINTER IS

PRINT ALL IS

printer no

file specifier

STDOUT

STDERR

CONSOLE

TTY

255

Output Operations
Printers

The REQUEST Statement

The REQUEST statement requests the use of a printer or port. Syntax for this
command is as follows:

 REQUESTprinter/port number [,return variable]

Theprinter/port number is an integer expression evaluating to the number of the
requested printer or port. Valid printer/port numbers are listed in this chapter
under page 252 . The parameterreturn variable should be replaced with a valid
variable name, if this parameter is desired.

The REQUEST statement first checks to see if the requested device is a printer or
a port. Printers and ports are defined in the user, group, and global configuration
files using the PRINTER and PORT statements.

If the return variable is omitted and the device is already reserved by another pro-
gram,ERROR 131 results. If the requested device is not defined in the user, group,
or global configuration file,ERROR 132 results.

If the return variable is pre-set to 0, the request is carried out in WAIT mode: that
is, if requesting an already reserved port, program execution will wait until the
port becomes avaliable. If the return variable is pre-set to 1, there will be no wait
and [1] is returned (see below).

If the requested device is a port, the corresponding HP-UX device file is locked,
reserving it for your use.

The value returned to thereturn variable, if present, is based upon the following
criteria:

• 0 returned if request a printer.

• 0 returned if request a port that is available.

• 1 returned if request a port that is already reserved.

NOTE: The REQUEST statement is different from the REQUEST # statement. REQUEST # has
to do with multiple task programming.

256

Output Operations
Printers

The RELEASE Statement

The RELEASE statement cancels any previous REQUEST for the specified
device. Note that it is not necessary to RELEASE a printer. This is because a
printer is not locked at the time the REQUEST is started. Syntax for the
RELEASE statement is as follows:

 RELEASEprinter/port number

NOTE: The RELEASE statement is different from the RELEASE # statement. RELEASE # has to
do with multiple task programming.

257

Output Operations
Audible Output (BEEP)

Audible Output (BEEP)

The BEEP statement creates a brief audible tone which can be used in a number of
ways. The syntax is as follows:

 BEEP

BEEP can signal that a particular computation or program segment is complete. It
can also be used to audibly indicate that the computer is ready for input, so that
the operator does not have to remain at the keyboard.

Here is an example:

250 FOR I=1 TO 25
260 BEEP
270 INPUT ”ENTER VALUE:”;Value(I)
280 NEXT I

In this case, a beep signals the operator when the program is ready for input.
Another practical use for BEEP is to signal the operator when a data-entry error
occurs.

As another example, here is a musical sequence to signal the end of a program:

10 FOR Beep=1 TO 7
20 READ Delay
30 WAIT Delay*10
40 BEEP
50 NEXT Beep
60 DATA 80,40,15,15,40,80,40
70 END

258

Output Operations
Displayed Output (DISP)

Displayed Output (DISP)

NOTE: The DISP statement is available on HP-UX platforms, only.

The DISP (display) statement outputs text and variables on the display. Syntax is
as follows:

 DISP [display list]

Thedisplay list can contain one or more of the following:

• Variable names.

• Array identifiers.

• Numeric expressions.

• String expressions.

• User Defined Types.

• TAB, SPA, LIN and PAGE functions (covered later).

Each item must be separated by either a comma or semicolon.

Here are some examples:

10 X=3.5
20 E$=”SQUARED EQUALS”
30 DISP ”X ”;E$[9];X,”X ”;E$;X^2

X EQUALS 3.5 X SQUARED EQUALS 12.25

40 DISP 1,2,3,4
50 DISP 1;2;3;4;5;6;7;8;9;10;11;12;13;14;15;16;17;18

1 2 3 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

The difference in spacing between numbers is controlled by use of commas and
semicolons. When an item is followed by a comma, it is left-justified in a field 20
characters wide. Two or more commas after an item cause one or more character
fields to be skipped. For example:

60 DISP 123456, ,654321

123456 654321

When an item is followed by a semicolon, no additional blanks are output.
Remember that every number has a leading blank or minus sign and a trailing
blank for spacing. For example:

259

Output Operations
Displayed Output (DISP)

10 STANDARD
20 GOSUB Disp
30 FIXED 3
40 GOSUB Disp
50 FLOAT 5
60 GOSUB Disp
70 STANDARD
80 GOTO 110
90 Disp: DISP 123;.456; −789; −1.23E45
100 RETURN

123 .456 −789 −1.23e+45
123.000 .456 −789.000 −1.23E+45
1.23000E+02 4.56000E −01 −7.89000E+02 −1.23000E+45

When the display list ends with a comma or semicolon, any future DISP statement
is appended to the current display line. For example:

110 INPUT ”ENTER TODAY’S DATE:”;Date$
120 DISP ”TODAY’S DATE IS: ”;
130 DISP Date$

TODAY’S DATE IS: Sept 22nd

If the output line is longer than the current display width, a carriage-return line-
feed (CRLF) is normally output after every 80th character. This can be altered by
assigning another line width via PRINTER IS. For example:

140 PRINTER IS 8,WIDTH(40)

sets the display line width to 40 characters. In this case, the new line width is in
effect for successive DISP, PRINT, PRINT USING, and DISP USING output.

Below you find two examples concerning printing of User Defined Type vari-
ables.

In the example below, the Comment$ member variable from the Phone1 variable is
displayed.

Phone1.Comment$="*Fancy Comment*"

DISP Phone1.Comment$

In addition to accessing single variables, you can specify the whole variable at
once.

The example below displays all member variables of Phone1:

DISP STRUCT Phone1

260

Output Operations
The LDISP Statement

The LDISP Statement

NOTE: The LDISP Statement is available on the HP-UX platform, only.

The LDISP (line display) statement outputs text and variables on the display, like
DISP, but the output is placed on a complete display line, rather than in separate
fields. Syntax for the LDISP statement is as follows:

 LDISP [display list]

The display list can contain the same item types as with DISP. Each item must be
separated by either a comma (open spacing) or a semicolon (pack items together).
The LDISP operation skips over any protected display lines and outputs the list on
the first unprotected line found. See page 274 later in this chapter.

Here is an example sequence which uses LDISP to replace a previously-output
message with another:

110 DISP ”C/H C/S”! Cursor Home/Clear Screen characters
120 INPUT ” ↓↓↓↓↓ENTER TODAY’S DATE:”;Date$
130 DISP ” ↑↑”
140 LDISP ”SELECT PROCEDURE BELOW:”

Line 110 outputs display-control characters (C/H C/S - the exact representation of
these characters may vary from screen to screen) used to clear the display. Line
120 uses display control characters to position the cursor before displaying each
string (↓↓↓↓↓). Line 130 then repositions the cursor so that line 140 will erase
the input-prompt line and display the last message. Note that the CURSOR state-
ment can be used in place of display-control characters to position the cursor. See
page 268 later in this chapter.

The display-control characters are output in a DISP statement (line 130), rather
than in the LDISP statement. This is because LDISP is a “line output” operation
(like CATALOG and LIST), so it does not execute display-control characters; it
displays the actual characters instead. This allows you to use these characters in
displayed messages, as shown in the following example:

190 LDISP ”TODAY’S DATE IS →ÆÆ”;Date$

It also allows recalling the entire contents of a string variable containing display-
control characters. For example, executing the line below clears the display and
then displays ABC:

A$=” C/H C/S ABC”

261

Output Operations
The LDISP Statement

Executing an expression from the keyboard actually performs an “implied
LDISP”. To recall the entire value of A$, do not execute DISP A$ (an item output
operation), but execute LDISP A$ (a line output operation).

262

Output Operations
POPUP BOX

POPUP BOX

The POPUP BOX function will superimpose a box on your screen and wait for
user response.

Syntax:

 POPUP BOX [xpos , ypos ,] Image_def [,Return]

 Image_def: ”[Heading] [textlines |...|...][button1 |...]”

Example:

 POPUP BOX “[Heading][Text line #1|Text line #2][YES|NO]”

 | HEADING | <- header
 | |
 | Text line #1 | <- text
 | Text line #2 |
 | |
 | [YES] [NO] | <- “buttons”

This box consists of 3 parts:

header output in reverse

text up to 19 text lines separated by “|” character (header and text
together can be up to 20 characters.)

buttons up to 5 buttons separated by “|” character

Header and text is optional and can be empty.

 <xpos>

and

 <ypos>

are optional. If the are omitted, the box is centered on the screen. If

 <xpos>

or

 <ypos>

is <= 0 then this value will be ignored and default will be used.

You have to specify at least one “button”. The user can select a “button” in several
ways:

263

Output Operations
POPUP BOX

• Press RETURN. This will select the “default” button (reverse one). By pressing back-
space, space or using the cursor keys you can move the default button.

• Press the first character from the button text (in this example either ’y’ or ’n’).

If you specify the return variable it’s possible to preset the default button (0 = 1st,
1 = 1st, 2 = 2nd). The user’s choice will be returned in this variable.

You will get ERRORS 870 to 875 if you specify an invalid box position or an
invalid box “image”.

NOTE: The screen buffer will be saved and restored. Program execution will be suspended until
user selects a “button”. In BACKGROUND, the default button will be selected.

NOTE: When the ".driver" attribute is set, the POPUP BOX is mapped to a dialog window.

264

Output Operations
The REFRESH Statement

The REFRESH Statement

NOTE: The REFRESH statement is available on the HP-UX platform, only. It has an effect on
character oriented user interfaces, only.

The REFRESH statement refreshes the display of the terminal on your system. Its
syntax is as follows:

 REFRESH [ON]

 REFRESH OFF

REFRESH or REFRESH ON redraws the display of the terminal associated with
the task executing the statement. The REFRESH statement is similar in effect to
pressingCTRL L on the terminal’s keyboard.

Screen refreshment is done in two steps. First the internal screen buffer will be
maintained. Then terminal image will be updated from internal screen buffer.

REFRESH OFF will suppress updating of terminal image. So it’s possible to save
some i/o time and prevent terminal flicker.

REFRESH ON will update terminal image from internal screen buffer and re-
establish automatic updating of terminal image. REFRESH ON is executed
implied every time Eloquence waits for a user interaction (INPUT, LINPUT,
WAIT, PAUSE), because the screen has to be up to date.

265

Output Operations
Output Functions

Output Functions

Four functions are available to increase output formatting capabilities—TAB,
SPA, LIN, and PAGE. The functions can be used in DISP, LDISP, and PRINT
statements. Each function must be followed by either a comma or a semicolon (it
makes no difference here).

NOTE: The statementsTAB, SPA, LIN, and PAGE work with DISP and LDISP on the

The TAB Function

The TAB function causes the next item in the list to be output beginning in the
specified column. Syntax is as follows:

 TAB (charcter position)

The character position is any numeric expression, and is rounded to an integer. If
it is less than 1, it defaults to 1. For example:

160 DISP 1;2;3;TAB(10),”BEGINNING OF 10th COLUMN”

1 2 3 BEGINNING OF 10th COLUMN

If the specified column has already been filled, a CRLF is output, and then the
TAB is completed. For example, if the line above is changed to:

170 DISP 1,TAB(10),”BEGINNING OF 10th COLUMN”

1
BEGINNING OF 10th COLUMN

a CRLF would be output after 1 (notice that the comma causes it to be output in a
20-column field) and the text appears on the next line.

When the character position specified is greater than the number of columns in the
standard printer, it is reduced by this formula:

 character position MOD N

N being the number of columns specified as the standard printer width. If the
character position is a multiple of the printer width, this formula returns a 0. In
this case, the item is output in the last column which equals the printer width. For
example, with a display width of 80:

180 DISP TAB(10),1;TAB(90),2;TAB(170),3
1
2

3

266

Output Operations
Output Functions

The SPA Function

The SPA (space) function outputs the specified number of blank spaces, up to the
end of the current line. Syntax is as follows:

 SPA (number of spaces)

Here is an example:

190 DISP 1;SPA(10);2;SPA(10);3
200 DISP 1,SPA(10),2,SPA(10),3

1 2 3
1 2 3

The number of spaces is any positive numeric expression from 0 through 32767,
and is rounded to an integer. If it specifies more blanks than remain in the line, the
next item begins the next line. For example:

210 Ast$=”**********”
220 DISP Ast$;TAB(70);Ast$;SPA(20);Ast$

********** **********

The LIN Function

The LIN function causes the specified number of linefeeds to be output. Syntax is
as follows:

 LIN (number of linefeeds)

The number of linefeeds is any numeric expression, and is rounded to an integer.
Its range is from−32768 through 32767.

Here is an example:

230 INPUT ”DATE:”;Date$
240 DISP ”DATE:”;Date$,LIN(5),”END OF PROGRAM”,LIN(5)

DATE:April 23rd

END OF PROGRAM

When the number of linefeeds is positive, a carriage return is also output. When 0
is specified, only a carriage return is output.

When the number of linefeeds is negative, no carriage return is output and the
number of linefeeds output equals the absolute value of the expression. For exam-
ple:

267

Output Operations
Output Functions

10 DISP ”TODAY”;LIN(−2);”IS”;LIN(−2);”FRIDAY”

TODAY

IS

FRIDAY

The PAGE Function

The PAGE function causes a form feed to be output, so further printing can begin
on a new page or at the top of the next form on devices that respond to ASCII
form feed (CHR$(12)). The syntax is as follows:

 PAGE

Here is an example:

130 Heading: ! print catalog header.
140 PRINT PAGE,Cat$(1)
150 PRINT Cat$(2);LIN(1)

When the standard printer is the display, PAGE scrolls the display buffer up to
position the cursor at the top of the display.

Here is a short program which uses some of the output function to repeatedly out-
put a string diagonally across the display:

10 DISP PAGE
20 Column=1
30 FOR Line=1 TO 10
40 DISP SPA(Column);”Eloquence”
50 Column=Column+3
60 NEXT Line
70 END

Eloquence
Eloquence

Eloquence
Eloquence

Eloquence
Eloquence

Eloquence
Eloquence

Eloquence
Eloquence

268

Output Operations
Display Enhancements

Display Enhancements

NOTE: Display Enhancements are available on the HP-UX platform, only.

The CURSOR Statement

The CURSOR statement allows program control of the display cursor and modifi-
cation of a block of displayed characters. The syntax is as follows:

 CURSORitem list

Any combination of these control items can be used:

(X pos, Y pos) Cursor position.

IV Set inverse video.

BL Blinking character.

UL Underline field.

HB Set half bright display.

RE Reset field enhancement.

PL Protect lines.

UPL Unprotect lines.

IF Specify input field.

RIF Reset input field.

OF Specify output field.

ROF Reset output field.

PALL Protects all lines of the display buffer.

Each CURSOR item must evaluate to an integer greater than 0. There now fol-
lows a description of each control item.

The Eloquence Forms software provides additional CURSOR control items to
assign input/output field numbers. See theEloquence Forms Manual for details.

Set Cursor Position

 (X pos,Y pos)

269

Output Operations
Display Enhancements

 (X pos)

 (Y pos)

This item allows the cursor to be positioned anywhere within the display buffer.
The X position, if specified, determines the character position within a display
line. An X position greater than 80 will “wrap around” to the second row of the
same line. (Remember, the display buffer width is initially 160 characters but can
be changed by using PRINTER IS.) If the X position is not specified, the current
cursor X position will be used.

The Y position, if specified, determines the number of lines down from the
HOME position, which is the top of the display buffer. Any Y position below the
last line will add new lines as required. If it is not specified, the current Y position
is used.

Note that the cursor must remain on the display at all times, so the display may
scroll up or down appropriately to satisfy this condition. The cursor may be repo-
sitioned many times in a single CURSOR statement, with other functions being
performed at the intermediate positions.

This program generates the same display as that illustrating the PAGE function,
but CURSOR is used here in place of output functions:

10 CURSOR (1,1)
20 Column=1
30 FOR Line=1 TO 10
40 CURSOR (Column,Line)
50 DISP ”Eloquence”
60 Column=Column+3
70 NEXT Line
80 END

Line 10 positions the cursor to the top of the display buffer, whereas the PAGE
function in the earlier program only sets the cursor to the top of the next page of
the buffer.

Here is a more practical example of CURSOR use:

270

Output Operations
Display Enhancements

The Assign routine assigns line-drawing characters to elements of a string array,
one line per string. Then the Draw routine displays the strings to create the form.
Notice that the CURSOR statements reposition the cursor before each DISP. Here
is the resulting display:

CURSOR can also be used to accurately position the display cursor while adding
each title to the form:

210 Add_titles: !

271

Output Operations
Display Enhancements

220 CURSOR (31,2)
230 DISP “IN-STOCK REPORT”
240 CURSOR (13,4)
250 DISP “Part No.”;
260 CURSOR (27,4)
270 DISP “Description”;
280 CURSOR (49,4)
290 DISP “On Hand”
300 CURSOR (67,4)
310 DISP “On”;
320 CURSOR (66,5)
330 DISP “Order”;
340 CURSOR (12,5)
350 DISP “XXXXX-XXXXX”;
360 CURSOR (41,5)
370 DISP “Qty”
380 CURSOR (48,5)
390 DISP “Cost”
400 CURSOR (56,5)
410 DISP “Tot. Cost”;

Notice that a semicolon follows each DISP statement here, to suppress additional
spaces which may print over the line-drawing characters. (Unless you meticu-
lously plan the position of each line-drawing and title character in advance, creat-
ing forms of this kind is, at best, a trial and error experience.)

Now the form looks like this:

272

Output Operations
Display Enhancements

The XPOS and YPOS Functions

 XPOS

 YPOS

These functions return numeric values according to the current cursor position.
YPOS returns the current line number, relative to the first line of the display buffer
(home). XPOS returns the character position of the cursor in the current line. Both
values will always be greater than 0. These functions may be used anywhere in
Eloquence expressions, but they are particularly useful in conjunction with the
CURSOR statement for relative movement of the cursor or for monitoring user
manipulation of the cursor.

Here is another version of the display program shown under the description of the
PAGE function.

10 CURSOR (1,1)
20 FOR Line=1 TO 10
30 DISP ”Eloquence”;
40 CURSOR (XPOS−2,YPOS+1)
50 NEXT Line
60 END

Field Enhancements

These items affect the characters starting at the current cursor position. The
parameterfield length specifies the number of characters to be enhanced. The cur-
sor will be left in its original position at the first enhanced character. The RE item
cancels any previous enhancement items for the specified display field.

The characters used by the computer to control the display enhancements are sup-
plied in page 383 .

Here is a program that demonstrates all of the field enhancements:

10 DISP ”Cr/H Cl/S” ! Cursor home and clear display.
20 Inverse: ! fill screen with inverse video fields.
30 FOR Line=1 TO 24
40 CURSOR (1,Line),IV(80)

IV

BL

UL

HB

RE

field length

273

Output Operations
Display Enhancements

50 DISP ”INVERSE VIDEO”
60 NEXT Line
70 Halfbright: ! add fields in halfbright video.
80 WAIT 1000
90 FOR Line=2 TO 24 STEP 2
100 CURSOR (1,Line),HB(80)
110 DISP ”HALF BRIGHT”
120 NEXT Line
130 WAIT 1000
140 Blinking: ! add alternate blinking fields.
150 FOR Line=2 TO 24 STEP 2
160 CURSOR (40,Line),BL(40)
170 DISP ”BLINKING FIELD”
180 NEXT Line
190 WAIT 1000
200 Underline: ! add underlined fields.
210 FOR Line=1 TO 23 STEP 2
220 CURSOR (40,Line),UL(40)
230 DISP ”UNDERLINED FIELD”
240 NEXT Line
250 WAIT 5000
260 Reset: ! reset all display enhancements.
270 FOR Line=1 TO 24
280 CURSOR (1,Line),RE(80)
290 NEXT Line
300 END

Line 10 sets the cursor at buffer home and clears the buffer. The Inverse routine
fills the display with inverse video fields and labels each line. The Halfbright rou-
tine then fills every other line with half bright fields. The next two routines fill the
right half of the display with blinking and underlined labels.

The display now looks like the following:

274

Output Operations
Display Enhancements

Finally, the last routine resets (clears) all field enhancements, leaving only the dis-
played labels.

The next program uses CURSOR to draw a box of inversed-video characters.
Within the box is a blinking, underlined message.

10 DISP ”Cr/H Cl/S”! Cursor home and clear screen
20 CURSOR (18,5),IV(44)
30 CURSOR (18,6),IV(44)
40 CURSOR (18,7),IV(2),(60),IV(2)
50 CURSOR (18,8),IV(2),(60),IV(2)
60 CURSOR (18,9),IV(2),(60),IV(2)
70 CURSOR (18,10),IV(2),(30),UL(20),BL(20),(60),IV(2),(30)
80 DISP ”LINE DRAWING IS FUN!”
90 CURSOR (18,11),IV(2),(60),IV(2)
100 CURSOR (18,12),IV(2),(60),IV(2)
110 CURSOR (18,13),IV(2),(60),IV(2)
120 CURSOR (18,14),IV(44)
130 CURSOR (18,15),IV(44)
140 END

Here is the resulting screen:

Protect and Unprotect Lines

 CURSOR (x,y) PL (number of lines)

 CURSOR (x,y) UPL (number of lines)

 CURSOR (x,y) PALL

 CURSOR (x,y) UPALL

275

Output Operations
Display Enhancements

To prevent input or output fields on the screen from being overwritten, PL and
PALL allow lines of the screen to be declared as unmodifiable, or protected. UPL
and UPALL allow “unprotecting” screen lines. An unprotected line could be mod-
ified by the keyboard, a program, or the system. CURSOR PL(x) protects x num-
ber of lines starting with the current cursor position. PALL protects all lines in the
display buffer.

CURSOR (x,y) PL(z) unprotects z number of lines starting with the current cursor
position (x,y). CURSOR (x,y) UPALL unprotects lines in the current display
buffer.

Note that protected lines will not be stripped from the top of the display buffer.
This can be of use in fixing the HOME position if an absolute reference is desired
for the cursor position function. However, the lines must then be explicitly unpro-
tected to allow the system to recover unnecessary display areas.

Input and Output Fields

 CURSOR (x,y) IF (field width)

 CURSOR (x,y) OF (field width)

 CURSOR (x,y) RIF (field width)

 CURSOR (x,y) ROF (field width)

Fields within a line can be declared as input-only or output-only. IF, OF, RIF, and
ROF work on lines that have been protected. (For more information on protected
lines, refer to page 274 in this chapter.)

An input field can receive input from the keyboard only. Your program must not
attempt to print in an input field. In the statement CURSOR (x,y) IF(z) there is an
input field of length z starting at cursor position (x,y). In an INPUT or ENTER
statement, one input variable is assigned to each input field. When entering the
data, pressTAB to move the cursor to the first character of the next input field.
PressSHIFT TAB to move the cursor to the previous input field.

An output field can only receive output from the computer. Your program must
not expect input from an output field. Each sequential output item goes to the next
sequential output field or the next unprotected line, whichever comes first. After
output to an output field, the cursor rests at the next character position until moved
by another CURSOR, input, or output operation.

Output fields only receive output, such as from DISP, PRINT, and the prompt
from an INPUT. Line output operations such as LIST, LDISP or CAT do not alter
protected lines. The line output occurs on the next unprotected line.

276

Output Operations
Display Enhancements

The next example is part of a program to initiate new customer accounts. The
New Customer form is first displayed; then underscores are used to fill the input
fields. Then the input fields and one output field are defined. Line 210 protects the
entire display page. The input-data routine suspends program execution to permit
user entry and then enters data from each field using ENTERs. An account num-
ber is then assigned and placed in the output field with a DISP. The remainder of
the program sets up the customer account.

10 DIM Name$[35],Address$[50],Zip$[5],Phone$[11]
20 Display_form: !
30 DISP ” NEW CUSTOMER FORM ”
40 DISP ” NAME ____________ , ____________ ,
____________ ”
50 DISP ” last first midd
le”
60 DISP ” ADDRESS ____________ ”
70 DISP ” street”
80 DISP ” ____________ , ____________ ”
90 DISP ” city state”
100 DISP ” ____________ (____________)
____________ ”
110 DISP ” zip telephone”
120 DISP ” ACCOUNT NO.”
130 DISP ” ____________
140 DISP ”ENTER INFORMATION INTO EACH BLANK FIELD. USE THE ”
150 DISP ”TAB KEY TO MOVE TO THE NEXT FIELD. PRESS ENTER WHEN

COMPLETE”
160 Define_fields: !
170 CURSOR (11,5),IF(15),(29,5),IF(15),(47,5),IF(2)
180 CURSOR (14,8),IF(19),(14,11),IF(14),(31,11),IF(5)
190 CURSOR (14,14),IF(5),(23,14),IF(3),(28,14),IF(8)
200 CURSOR (19,19),OF(20)
210 CURSOR (1,1),PL(24)
220 Input_data: !
230 CURSOR (5,5) ! Set cursor to first field.
240 INPUT ! Allow operator to fill fields.
250 CURSOR (5,5)
260 ENTER Name$[1,15],Name$[16,30],Name$[31,32]
270 ENTER Address$[1,19]
280 ENTER Address$[20,34],Address$[35,39]
290 ENTER Zip$,Phone$[1,3],Phone$[4,11]
300 CURSOR (1,1),UPL(24)
310 Assign_account: !
320 READ #1;Account_no
330 CURSOR (19,19)! Set cursor at output fields.
340 DISP Account_no+1
350 PRINT #1;Account_no+1
360 CURSOR (1,1),UPL(24)
370 Open_file: ! Open new file on customer.

Notice that the cursor must be positioned at the beginning of each display input or
output operation. See line 230, 250, and 330. Be sure to unprotect the display (line
300) after entering data to allow use of the display lines by other operations.

The form generated by this program is shown here:

277

Output Operations
Display Enhancements

278

Output Operations
The PRINT Statement

The PRINT Statement

The PRINT statement allows text and variables to be output on the standard
printer. Syntax for this statement is as follows:

 PRINT [print list]

The print list can contain one or more of the following:

• Variable names.

• Array identifiers.

• Numeric expressions.

• String expressions.

• User Defined Types.

• TAB, SPA, LIN, and PAGE functions.

As with DISP, each item must be separated by a comma or semicolon.

Here are some examples:

10 FOR I=1 TO 5
20 PRINT ”I EQUALS ”;I
30 NEXT I

I EQUALS 1
I EQUALS 2
I EQUALS 3
I EQUALS 4
I EQUALS 5

40 PRINT ”11111”;”22222”;”33333”;”44444”
50 PRINT ”55555”;”66666”;”77777”;”88888”

11111222223333344444
55555 66666 77777 88888

Notice that commas and semicolons have the same effect in PRINT as in DISP: A
comma after an item causes an item to be output left-justified, in a 20-character
field. A semicolon after an item suppresses additional blanks. A comma or semi-
colon after the last item in the list allows a future print list to be appended by sup-
pressing the CRLF. A CRLF is automatically output when the WIDTH is
exceeded.

279

Output Operations
The PRINT Statement

The current numeric output form (FIXED, FLOAT, or STANDARD) determines
how a number is output with DISP and PRINT.

For example:

60 STANDARD
70 GOSUB Print
80 FIXED 2
90 GOSUB Print
100 FLOAT 4
110 GOSUB Print
120 STANDARD
130 STOP
140 Print: PRINT 123;.4560; −78910; −1.235E47
150 RETURN

123 .456 −78910 −1.235e+47
123.00 .46 −78910.00 −1.235E+47
1.2300E+02 4.5600E −01 −7.8910E+04 −1.2350E+47

NOTE: To print the " character, type PRINT CHR$(34).

Below you find two examples concerning printing of User Defined Type vari-
ables.

In the example below, the Comment$ member variable from the Phone1 vari-
able is PRINTed.

Phone1.Comment$="*Fancy Comment*"

PRINT Phone1.Comment$

In addition to accessing single variables, you can specify the whole variable at
once.

The example below prints all member variables of Phone1:

PRINT STRUCT Phone1

280

Output Operations
Formatted Output

Formatted Output

The PRINT USING and IMAGE statements provide complete control output for-
mat by referencing a list of specifiers called an image string. The image string can
be listed in an IMAGE statement and then referenced by stating the IMAGE state-
ment line id in a PRINT USING statement:

 PRINT USINGline id [;print-using list]

 IMAGE "format string"

Or, the image string can be contained in a string expression which is stated in
place of the line id in PRINT USING:

 PRINT USINGstring expression [;print-using list]

The string expression must be a valid image string at the time of execution.

The image string is a list of output specifiers, each separated by a delimiter. Each
specifier creates a part of the output format, such as numeric and string fields,
blanks, and carriage control. Each numeric or string field specifier corresponds to
an equivalent item in the print-using list, and indicates how that item is to be out-
put. The image specifiers and delimiters to be described are summarized in the
next table.

An IMAGE statement must be used when literals are to be included in an image
string. For example, either of these sequences is allowed:

300 IMAGE 30X,”Title”
310 PRINT USING 300
350 PRINT USING ”30X,5A”;”Title”

but this sequence is not:

400 PRINT USING”30X",”Title””

The print-using list can contain one or more of the following:

• Variable names.

• Array identifiers.

• Numeric expressions.

• String expressions.

The items are separated by either commas or semicolons. Unlike PRINT or DISP,
the delimiter used has no effect on the printout. The output is totally controlled by
the image string.

281

Output Operations
Formatted Output

PRINT USING output is directed to the standard printer, the device specified by
PRINTER IS. To ensure that formatted output will be directed to the display, use
the DISP USING keyword in place of PRINT USING.

282

Output Operations
Formatted Output

"·" indicates a blank space.

Table 19 Summary of Image Symbols

Image
Symbol

 Symbol
Replication

 Purpose Comments

X Yes Blank Can go anywhere

" " Text Can go anywhere

D Yes Digit Fill = blanks

Z Yes Digit Fill = zeros

* Yes Digit Fill = asterisks

S Sign "+" or "−"

M Sign "·" or "−"

. Radix Output "."

C Comma Conditional number separator

R Radix Output ","

P Decimal Point Conditional number separator

A Yes Characters Strings

() Yes Replicate For specifiers, not symbols

Carriage control Suppress CRLF

+ Carriage control Suppress LF

− Carriage control Suppress CR

K Compact Strings or numerics

, Delimiter

/ Yes Delimiter Output CRLF

@ Delimiter Output FF

283

Output Operations
Formatted Output

Delimiters

Three delimiters are used to separate field specs:

, A comma is used only to separate two specifiers.

/ A slash causes output of a CRLF. When using display output
fields (CURSOR), use the / to advance to the next output field.
A slash can also be used to separate two specifiers.

@ The @ sign outputs a top-of-form (FF) signal, starting a new
page of output. It can also be used to separate two specifiers.

/ and @ can also be used as specifiers by themselves; that is, they can be separated
from other specs by a comma. Only the / can be directly replicated, however, as
explained later.

Blank Spaces

A blank space is specified with X;nX specifiesn blanks. Any X spec can be
embedded within any other field spec.

String Specifications

Text can be specified in two ways:

" " A literal spec is text enclosed in quotes. This spec may be
embedded within any other field spec.

A The character A is used to specify a single string character. nA
specifies n characters. The length of the string spec is deter-
mined by the number of As that are specified between delimit-
ers; this corresponds to one item in the print using list.

For example:

10 IMAGE ”*****”,4X”RESTART”4X,”*****”
20 PRINT USING 10

30 Res$=”RESTART”
40 IMAGE ”*****”4X7A4X”*****”
50 PRINT USING 40;Res$

60 PRINT USING ”5A4X7A4X5A”;”*****RESTART*****”

Each of the sequences causes the same output:

***** RESTART *****

284

Output Operations
Formatted Output

If the string item in the print using list is longer than the number of characters
specified, the string is truncated. For example:

70 PRINT USING ”4A”;”RESTART”

REST

If the item is shorter, the rest of the field is filled with blanks.

Display Enhancements and Alternate Character Sets

As shown earlier in the manual, use of display enhancements (inverse video, etc.)
and alternate character strings adds unseen characters, or control bytes, to the
apparent string length. For example, this statement A$="ABCDE" actually assigns
seven characters to A$, the five visible underlined characters and one control byte
at each end of the string. Although these control bytes must be taken into account
during string operations (dimensions, substrings, string functions, etc.), they need
not be considered with IMAGE/PRINT USING operations. So the statement
PRINT USING "5A"; "ABCDE" will output the entire enhanced string.

Numeric Specifications

Numeric specs can be made up of digit symbols, sign symbols, radix symbols,
separator symbols and an exponent symbol. All these symbols are discussed on
the following pages.

Digit Symbols
D Specifies a digit position.nD specifiesn digit positions. Lead-

ing zeros are replaced with a blank space as a fill character.

Z Specifies a digit position;nZ specifiesn digit positions. Lead-
ing zeros are used as a fill character.

* Specifies a digit position;n* specifiesn digit positions. Leading
zeros are replaced with * as a fill character.

For example:

80 PRINT USING ”DDDDD,2X,DD”;250,45
90 PRINT USING ”ZZZZZ,2X,DDDDD”;251,321
100 PRINT USING ”*****,2X,ZZZZZ,2X,DDDDD”;99,88,77

250 45
00251 321
***99 00088 77

285

Output Operations
Formatted Output

Only the symbol D is allowed to the right of any radix symbol (see page 285).
Any digit symbol can be used to specify the integer portion of any number, but
they cannot be mixed. (For example, if D is used they must all be D.) Thus, the
following example shows an invalid image and would cause anIMPROPER
PRINT USING STATEMENT message:

 110 PRINT USING ”DDDZZ,2X,ZDZ”;123,456

Note that there is one exception to this rule. The exception is that the digit symbol
specifying the one’s place can be a Z regardless of the other symbols.

Radix Symbols

A radix symbol separates the integer part of a number from the fractional part. In
the United States, this is customarily the decimal point, as in 34.7. In Europe, this
is frequently the comma, as in 34,7. Only one radix symbol can appear in a
numeric specifier.

. Specifies a decimal point in that position.

R Specifies a comma in that position.

Here are some examples:

120 PRINT USING ”DDD.DD,2X,**Z.DDD,2X,ZZZRDD”;123.4,56.789,98,7
130 IMAGE DDZ.DDD,4X,ZZZ.DD
140 PRINT USING 130;.111,22.33

123.40 *56.789 098,00 7.00
0.111 022.33

Sign Symbols

Two sign symbols control the output of the sign characters + and−. Only one sign
symbol can appear in each numeric spec.

S Specifies output of a + sign if the number is positive,− if
the number is negative.

M Specifies output of a− sign if it is negative, a blank if it is posi-
tive.

If the sign symbol appears before all digit symbols in a numeric spec, it floats to
the left of the leftmost significant digit.

When no sign symbol is specified, any− sign occupies a digit position.

Here is an example:

150 PRINT USING ”MDD.DD,2X,DDSZ,DD”; −34.5, −67

−34.50 −67

286

Output Operations
Formatted Output

Digit Separator Symbols

Digit separators are used to break large numbers into groups of digits (generally
three digits per group) for greater readability. In the United States, the comma is
customarily used; in Europe, the period is commonly used.

C Specifies a comma as a separator in the specified position.

P Specifies a period as a separator in the specified position.

The digit separator symbol is output only if a digit in that item has already been
output; the separator must appear between two digits. When leading zeros are
generated by the Z symbol, they are considered digits and will contain any separa-
tors.

Here are some examples:

10 N=12345.67
20 PRINT USING ”DDDDD.DD”;N
30 PRINT USING ”DDCDDD.DD”;N
40 PRINT USING ”2DC3D.2D”;N
50 PRINT USING ”2D3DR2D”;N
60 PRINT USING ”ZZZCZZZ.2D”;N
70 PRINT USING ”6Z.2D”;N

12345.67
12,345.67
12,345.67
12345,67
012,345.67
012345.67

Floating Specifiers

The sign specs, S and M, or text in quotes that precede all digit specifiers in a
numeric spec will “float” past blanks to the leftmost digit of the number or to the
radix indicator. Here are some examples:

200 IMAGE ”(”DDD.DD”)”
210 PRINT USING 200;1.11,22.22

(1,11) (22.22)

10 IMAGE ”$”DCDDDCDDD.DD
20 FOR I=1 TO 6
30 READ Amt
40 PRINT USING 10;Amt
50 NEXT I
60 DATA .12,12.34,1234.56,123456.78,1234567.89,12345678.90

$.12
$12.34

$1,234.56
$123,456.78

$1,234,567.89
$$$$$$$$$$$$$

287

Output Operations
Formatted Output

The field of dollar signs indicates that the last item in the print-using list over-
flowed the image string.

Sign symbols and text that are embedded between digit symbols do not float. Here
are some examples of floating and non-floating specifiers ("·" indicates a blank
space):

X, S, M or text embedded in a numeric stops the floating field.

Symbol Replication

Many of the symbols used to make up image specifiers can be replicated
(repeated) by placing an integer (from 1 through 32767) in front of the symbol.
For instance, the following images all specify the same image string:

200 IMAGE DDDDDD.DD
210 IMAGE 2DD3D.2D
220 IMAGE 6D.2D

Placing an integer before a symbol works exactly like having multiple adjacent
characters. The X, D, Z, \ast, A, and / symbols can be replicated directly. For
example:

230 PRINT USING ”5(DX)”;1,2,3,4,5

1 2 3 4 5

Table 20 Summary of Image Symbols

IMAGE Output -17 Output +17

M4D ··-17 ···17

M4Z -0017 ·0017

M4* -**17 ·**17

S4D ··-17 ··¬+17

’T’4D ·T-17 ··T17

’T’M4D ··T-17 ··T·17

DMDD ·-17 ··17

DDMD ·1-7 ·1·7

DDDDS ··17- ·17+

288

Output Operations
Formatted Output

In addition to symbol replication, an entire specifier or group of specifiers can be
replicated by enclosing it in parentheses and placing an integer before the paren-
theses. For example:

10 IMAGE 3(K)
20 IMAGE DD.D,6(DDD.DD)
30 IMAGE D.D,2(DDD.DD),3(D.DDD)
40 IMAGE D,4(4X,DD.DD,”LABEL2”,2X,DD)
50 IMAGE 4Z.D,4(2X,4*Z.D,(2X,D))

In this manner, both K and @ can be repeated:

70 IMAGE 4(K),2(@)

Up to four levels of nested parentheses can be used for replication.

Compacted Specifier

A single symbol, K, is used to define an entire field for either numeric or string
output. If the corresponding print-using item is a string, the entire string is output.
If it is a numeric, it is output in standard form. K outputs no leading or trailing
blanks in numeric fields. For example:

80 IMAGE K,2X,K,K,K
90 PRINT USING 80;”ABC”,123,”DEF”,456

ABC 123DEF456

Carriage Control

A CRLF is normally output when the print-using list is exhausted. This can be
altered by using a carriage control symbol as the first item in an image string; a
comma must separate it from the next item.

Suppresses both the carriage return and linefeed.

+ Suppresses the linefeed.

− Suppresses the carriage return.

For example:

30 IMAGE #,4(A,2X)
40 IMAGE K
50 PRINT USING 30;”A”,”B”,”C”,”D”
60 PRINT USING 40;”***”

A B C D ***

Notice that PRINT USING "+" is equivalent to PRINT LIN(0); and PRINT
USING "−" is equivalent to PRINT LIN(−1).

289

Output Operations
Formatted Output

Here is a short program which uses carriage control and symbol replication in a
DISP USING image to print a table of ASCII characters and decimal values.

10 ! Display ASCII character set.
20 DISP ”Cr/H Cl/S”,SPA(25);”ASCII CHARACTER SET”,LIN(1)
30 FOR Char=32 TO 127
40 DISP USING 60;CHR$(Char),Char
50 NEXT Char
60 IMAGE #,AX,”(”,3D,”)”,3X
70 END

 The program above creates the following output:

 ASCII CHARACTER SET

 (32) ! (33) “ (34) # (35) $ (36) % (37) & (38)
’ (39)
((40)) (41) * (42) + (43) , (44) - (45) . (46)
/ (47)
0 (48) 1 (49) 2 (50) 3 (51) 4 (52) 5 (53) 6 (54)
7 (55)
8 (56) 9 (57) : (58) ; (59) < (60) = (61) > (62)
? (63)
@ (64) A (65) B (66) C (67) D (68) E (69) F (70)
G (71)
H (72) I (73) J (74) K (75) L (76) M (77) N (78)
O (79)
P (80) Q (81) R (82) S (83) T (84) U (85) V (86)
W (87)
X (88) Y (89) Z (90) [(91) \\ (92)] (93) ^ (94)
_ (95)
 (96) a (97) b (98) c (99) d (100) e (101) f (102)
g (103)
h (104) i (105) j (106) k (107) l (108) m (109) n (110)
o (111)
p (112) q (113) r (114) s (115) t (116) u (117) v (118)
w (119)
x (120) y (121) z (122) { (123) | (124) } (125) ~ (126)
(127)

 A DISP statement is used to output the table header, since display control charac-
ters cannot be output within a DISP USING statement.

A similar program is used to display a table of line drawing characters. In line 40,
a non-ASCII character (decimal value 147) is concatenated with each character in
the series to set the line drawing mode. Lines 50 through 80 insert a CRLF after
each nine data sets displayed.

10 ! Display LINE DRAWING character set.
20 DISP ” ”,SPA(25);”LINE DRAWING CHARACTER SET”,LIN(1)
30 FOR Char=161 TO 246
40 DISP USING 100;CHR$(147)CHR$(Char),Char
50 I=I+1
60 IF I

290

Output Operations
Formatted Output

9 THEN 90
70 DISP
80 I=0
90 NEXT Char
100 IMAGE #,AX,”(”,3D,”)”,2X
110 END

NOTE: The actual line drawing character set displayed depends on the type of workstation you are
using.

Reusing the Image String

An image string is reused from the beginning if it is exhausted before the print-
using list. A CRLF is not normally output until the list is exhausted. For example:

70 PRINT USING ”DDD.DD”;25.11,99,9

25.11 99.00 9.00

291

Output Operations
Formatted Output

Field Overflow

If a numeric item requires more digits than the field spec provides, an overflow
condition occurs. When this happens, the item which causes the overflow is
replaced with a field of dollar signs. Then the rest of the print-using list is output.
For example:

105 IMAGE 3(DD.D)
110 PRINT USING 105;111.11,2,33.3
120 PRINT USING 105,12.3,123,1234.56
130 PRINT USING 105;12.3, −1.2, −12.3

$$$$ 2.033.3
12.3$$$$$$$$
12.3 −1.2$$$$

Remember that a minus sign not explicitly specified with S or M requires a digit
position. For instance:

140 PRINT USING ”2(DD.D)”;12.3, −45.6

12.3$$$$

292

Output Operations
Spool Files

Spool Files

When lack of a printer prevents running a program, spool files can be used in
place of a printer. SPOOL (Simultaneous Peripheral Operations On Line) files
allow rapid, temporary storage of printer output. Spool operations, however, do
not relieve the CPU from eventually outputting the data to the printer. Using spool
files reduces program execution time, since printer output is stored directly on a
disk data file. The data can then be dumped to a printer or the display at your con-
venience.

Creating Spool Files

The three printer-control statements (PRINTER IS, PRINT ALL IS and SYSTEM
PRINTER IS) are used to create a unique data file which holds all output of that
type. The general syntax is as follows:

The optional WIDTH parameter specifies where to insert CRLFs in the output, as
described at the start of this chapter. Once created, each spool file must not be
accessed by other file storage operations (COPY, RENAME, PRINT#, etc.) until
you have completed spooling into the file. Then reassign the printer-control func-
tion to another device (for example, PRINTER IS 8) to close the spool file.

Here is a program sequence which creates three spool files for later use:

10 F$=”SPOOL”
20 D$=”,SCR_PAD”
30 PRINTER IS F$,WIDTH(80)
40 SYSTEM PRINTER IS F$”1”,WIDTH(132)
50 PRINT ALL IS ”SPOOLA”D$
60 END

Recording into Spool Files

Once created, each spool file is automatically accessed by successive output oper-
ations of the appropriate type—PRINTER, SYSTEM PRINTER, or PRINT ALL.
Only the significant characters of each line of output are recorded. CRLFs are
automatically inserted according to the WIDTH parameter.

PRINTER IS

SYSTEM PRINTER IS

PRINT ALL IS

file specifier ,WIDTH line width[]

293

Output Operations
Spool Files

Dumping Spool Files

An abbreviated form of the COPY statement is used to output the contents of each
spool file:

 COPYfile specifier

The contents of the spool file are dumped to the currently-specified printer of the
same type assigned to the spool file. The current line width of the printer is
ignored during the spool file dump.

Here is an example program which generates a 65-character-wide “ripple print-
out” of alphanumeric characters. The output is first spooled into a file called Rip-
ple then dumped to the printer.

10 Makeripple: ! output ripple to spool file.
20 PRINTER IS ”Ripple”,WIDTH(65)
30 PRINT LIN(5),SPA(25);”RIPPLE PRINT”,LIN(1)
40 C1=32
50 FOR Line=1 TO 32
60 FOR Char=C1 TO C1+64
70 PRINT CHR$(Char);
80 NEXT Char
90 C1=C1+1
100 NEXT Line
110 Dumpripple: ! copy spool file to printer.
120 PRINTER IS 0,WIDTH(200)
130 COPY ”Ripple”
140 END

Notice that the output can be duplicated as many times as needed by simply
repeating the COPY statement.

RIPPLE PRINT
!”#$%&’()*+,-./0123456789:;%<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_

!”#$%&’()*+,-./0123456789:;%<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_a
”#$%&’()*+,-./0123456789:;%<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_ab
#$%&’()*+,-./0123456789:;%<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_abc
$%&’()*+,-./0123456789:;%<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_abcd
%&’()*+,-./0123456789:;%<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_abcde
&’()*+,-./0123456789:;%<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_abcdef
’()*+,-./0123456789:;%<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_abcdefg
()*+,-./0123456789:;%<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_abcdefgh
)*+,-./0123456789:;%<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_abcdefghi
*+,-./0123456789:;%<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_abcdefghij
+,-./0123456789:;%<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_abcdefghijk
,-./0123456789:;%<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_abcdefghijkl
-./0123456789:;%<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_abcdefghijklm
./0123456789:;%<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_abcdefghijklmn
/0123456789:;%<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_abcdefghijklmno
0123456789:;%<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_abcdefghijklmnop
123456789:;%<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_abcdefghijklmnopq
23456789:;%<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_abcdefghijklmnopqr

294

Output Operations
Spool Files

Appending to Spool Files

When an already-existing file is specified as a spool file, the computer attempts to
append the spool file output onto the existing file.

Spool File Errors

Error codes 140 through 149 are reserved for spool file operations (refer to the
error list in page 415). When one of these errors occurs, the spooling operation is
terminated, and the display is automatically reassigned as the appropriate printing
device (printer, print all or system printer).

295

Output Operations
Printer Control Functions

Printer Control Functions

Many printers have a set of control functions which are accessed via unique single
or multi-character control sequences. These ASCII character sequences can be
sent separately to initialize particular functions such as bell, back spacing, or
formfeed. The control sequences can also be embedded in text to be printed, or a
combination of both methods can be used.

The CHR$ string function is most often used to send control sequences to a
printer. For example, most printers respond to an ASCII BS character by back-
spacing one character. The BS character has an ASCII-decimal value of 8, allow-
ing this sequence to backspace and underline text.

10 PRINTER IS 0
20 PRINT ”HERE’S HOW TO BACKSPACE AND UNDERLINE.”;
30 FOR Char=1 TO 24
40 PRINT CHR$(8);
50 NEXT Char
60 PRINT ” ____________ ____________ ____________ ”
70 END

HERE’S HOW TOBACKSPACEAND UNDERLINE.

Use of the ASCII ESC (escape) character allows more complex functions to be
controlled on the printer. For example, the sequence ESC z initiates the printer’s
self-test routine. This statement sends those two ASCII characters to the printer:

10 PRINT CHR$(27)&”z”

Use of escape sequences allows turning on and off various modes. This statement
shows how to control the printer’s underline mode:

100 PRINT ”HERE’S ANOTHER WAY TO ”;CHR$(27)&”dD”;
”UNDERLINE”;CHR$(27)&”dA”;”.”

HERE’S ANOTHER WAY TOUNDERLINE

Consult the printer’s documentation for more information on printer control
codes, escape sequences, and printer control.

296

Output Operations
Printer Control Functions

297

10

Matrix Operations

This chapter describes the operations which can be performed on entire arrays.
Some of the operations are used exclusively with matrix or vector arrays.

A matrix is a two-dimensional array. A vector is a one-dimensional array. Matri-
ces and vectors are defined the same as other arrays.

These matrix statements and functions are described in this chapter:

298

Matrix Operations

MAT READ and
MAT READ# Copy values to the array.
MAT PRINT and
MAT PRINT# Write values from the array.
MAT INPUT,
MAT . . . CON,
MAT . . . ZER and
MAT-initialize Assign values to the array.
MAT Arithmetic operations are performed on the entire array.
SUM Returns the sum of all elements of the array.
ROW Returns the number of rows in the array.
COL Returns the number of columns in the array.
MAT . . . CSUM Finds the sum of all columns of the matrix.
MAT . . . RSUM Finds the sum of all rows of the matrix.

299

Matrix Operations
Redimensioning Arrays

Redimensioning Arrays

Many matrix array operations allow the working size of the array to be changed
prior to the actual execution of the operation. This is done when redimensioning
subscripts are included in the syntax. Arrays may also be redimensioned by the
REDIM statement which is described in page 73 .

There are two things to remember when redimensioning an array—the number of
dimensions cannot change and the number of elements in the redimensioned array
must be less than or equal to the number of elements in the original size.

300

Matrix Operations
Reading and Printing Arrays

Reading and Printing Arrays

MAT READ

To assign values to an array from within a program, the DATA statement is used
with MAT READ. Syntax for the MAT READ statement is as follows:

The MAT READ statement specifies entire arrays. Array elements are read in
order with the right-most subscript varying fastest.

For example:

10 OPTION BASE 1
20 INTEGER A(2,2,2)
30 DATA 1,2,3,4,5,6,7,8
40 MAT READ A
50 MAT PRINT A
60 END

1 2

3 4

5 6

7 8

Values are read in the following order:
A(1,1,1),A(1,1,2),A(1,2,1),A(1,2,2),A(2,1,1),A(2,1,2),A(2,2,1),A(2,2,2)

The following two statements are equivalent:

 MAT READ A READ A(*)

The MAT READ statement is programmable only; itcannot be executed from the
keyboard.

MAT READ array 1 (redim subscripts)[]
,array 2

(redim subscripts)

301

Matrix Operations
Reading and Printing Arrays

MAT PRINT

The MAT PRINT statement allows the entire array to be output on the standard
printer. Syntax for this statement is as follows:

The comma or semicolon following the array name specifies open or closed spac-
ing between elements. A comma causes each element to be output left justified, in
a 20-character field. A semicolon suppresses additional blanks. For example:

MAT PRINT A
5 5 5 5
5 5 5 5
5 5 5 5
5 5 5 5

MAT PRINT A,B
5 5 5 5
5 5 5 5
5 5 5 5
5 5 5 5
2 2 2
2 2 2
2 2 2

MAT PRINT B;
2 2 2
2 2 2
2 2 2

When an array has more than two dimensions, the last subscript varies fastest and
defines the length of a row. For example:

10 OPTION BASE 1
20 INTEGER C(2,3,4)
30 FOR I=1 TO 2
40 FOR J=1 TO 3
50 FOR K=1 TO 4
60 C(I,J,K)=X
70 X=X+1
80 NEXT K
90 NEXT J
100 NEXT I
110 MAT PRINT C;
120 END

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
16 17 18 19
20 21 22 23

C(2,3,4) is treated as two matrices, each 3 by 4 for output or input.

MAT PRINT array1
;

,

array2
;

,

. . .

302

Matrix Operations
Reading and Printing Arrays

File Input/Output

Entire arrays can be stored and retrieved by use of the MAT PRINT # and MAT
READ # statements. Syntax for these statements are as follows:

 MAT PRINT #file number [,record number]; array1 [,array2] [,END]

 MAT READ #file number [,record number]; array1 [,array2] [,END]

Arrays are stored and retrieved, element-by-element, without regard to dimen-
sionality. The last subscript varies fastest.

When the END parameter is specified in the MAT PRINT # statement, an end-of-
file mark is printed at the end of the data; otherwise, an end-of-record mark is
printed. For more details on PRINT #, READ #, and the other file storage opera-
tions, refer to page 195 .

303

Matrix Operations
Assigning Values to Arrays

Assigning Values to Arrays

MAT INPUT

The MAT INPUT statement suspends program execution, allowing values in the
form of expressions to be assigned to elements of arrays from the keyboard. Syn-
tax for this statement is as follows:

 MAT INPUT array1 [(redim subscripts)] [,array2] [(redim subscripts)]

When MAT INPUT is executed, a question mark (?) appears in the display line.
Values in the form of numeric expressions can be assigned individually or in
groups (separate each value with a comma). Values are stored by pressing
RETURN. The ? is redisplayed afterRETURN is pressed until all values are
input.

PressingRETURN without entering a value causes execution to continue with the
next element in the array. Elements not assigned values retain their previous
value. For example:

10 OPTION BASE 1
20 INTEGER A(2,2)
30 MAT INPUT A

Responding to the MAT INPUT statement by typing 2, typing 4, pressing
RETURN, and typing 8, assigns the following values:

A(1,1)=2
A(1,2)=4
A(2,1)=0 Note that the initial value, 0, is kept
A(2,2)=8

The following statements are equivalent:

MAT INPUT A INPUT A(*)

The MAT INPUT statement is programmable only; itcannot be executed from the
keyboard.

MAT . . . CON

Use the MAT . . . CON statement to assign the constant 1 to all elements of an
array. Syntax for this statement is as follows:

 MAT array = CON [(redim subscripts)]

Since 1 has a logical value of “true”, the constant matrix is useful for logical ini-
tialization.

304

Matrix Operations
Assigning Values to Arrays

The following two sequences are equivalent:

10 DINTEGER A(10,10) 10 OPTION BASE 1
20 MAT A=CON 20 DINTEGER A(10,10)

30 FOR I=1 TO 10
40 FOR J=1 TO 10
50 A(I,J)=1
60 NEXT I
70 NEXT J

MATZER

Use the MATZER statement to assign the value 0 to all elements of an array. Syn-
tax for this statement is as follows:

 MAT array = ZER [(redim subscripts)]

Since 0 has a logical value of “false”, the zero matrix is useful for logic initializa-
tion.

The following two sequences are equivalent:

10 REAL A(12,12,12) 10 REAL A(12,12,12)
20 MAT A=ZER 20 FOR I=1 TO 12

30 FOR J=1 TO 12
40 FOR K=1 TO 12
50 A(I,J,K)=0
60 NEXT K
70 NEXT J
80 NEXT I

MAT-initialize

The MAT-initialize statement assigns the same value to every element in an array.
Syntax for this statement is as follows:

 MAT array = (numeric expression or string expression)

The numeric expression is evaluated once; it is converted to the numeric type of
the array, if necessary. For example:

150 INTEGER X(4,4) 150 DIM A$(4)
160 MAT X=(PI) 160 MAT A$=(”TEST”)
170 MAT PRINT X; 170 MAT PRINT A$;

3 3 3 3 TEST
3 3 3 3 TEST
3 3 3 3 TEST
3 3 3 3 TEST

305

Matrix Operations
Arithmetic Operations

Arithmetic Operations

Copying an Array

To copy the value of each element of an array into the corresponding element of
the result array, use the MAT-copy statement. Syntax for this statement is as fol-
lows:

 MAT result array = operand array

The two arrays must have the same number of dimensions. The number of ele-
ments in the result array must be greater than or equal to the number of elements
in the operand array. For example:

10 INTEGER C(4,4),D(3,3),E(4,2)
20 MAT D=(2.5)
30 MAT C=D

Each element of arrayD is set to 2.5, then the values of arrayD are copied into the
elements of arrayC, then the working size of arrayC is redimensioned to be a 3 by
3 array.

40 MAT E=C

If the above statement was included, an error would occur because the arrayE has
only 2 elements in the second dimension while the operand array,C, has 3 ele-
ments.

Example for string array:

50 DIM A$(5),B$(5)
....

100 MAT A$=B$

Scalar Operations

The scalar operations allow an arithmetic or relational operation to be performed
with each element of an array using a constant scalar. The result of the operation
becomes the value of the corresponding element of the result array. Either of the
following syntax statements may be used to perform scalar operations:

 MAT result array = operand array operator (scalar)

 MAT result array = (scalar) operand array operator

For example, the following program line multiplies each element in arrayC by 4
and stores the result in the corresponding elements of arrayB:

306

Matrix Operations
Arithmetic Operations

30 MAT B=C*(4)

 To further explain, take the following program line:

150 MAT B=C>(100)

If any elements of arrayC have a value greater than 100, a value of 1 is entered in
the corresponding elements of arrayB. A 0 is entered if the value of the element in
arrayC is less than or equal to 100.

The following operators are allowed:

+, -, *, /

=, < > or #, >, <, >=, <=

The two arrays must have the same number of dimensions. The number of ele-
ments in the result array must be greater than or equal to the number of dimen-
sions in the operand array. The result array is redimensioned to the working size
of the operand array after the operation.

Matrix Arithmetic Operations

The MAT-arithmetic statement allows an arithmetic or relational operation to be
performed with corresponding elements of two arrays. The result becomes the
value of the corresponding element in the result array. Syntax for this statement is
as follows:

 MAT result array = operand array1 operator operand array2

For example, the following program line multiplies corresponding elements of
arrays Hours and Rate and stores them in array Pay:

200 MAT Pay=Hours.Rate

Note that a period (.) is used for multiplication, not an asterisk (\ast).

To further explain, take the following example:

30 MAT A=B>C

If the value in the element of arrayB is greater than the corresponding element of
arrayC, a value of 1 is stored in arrayA.

The following operators are allowed:

+, -, /

=, < > or #, >, <, >=, <=

The result and operand arrays must have the same number of dimensions. The
operand arrays must have the same number of elements in each dimension; the
result array cannot have less.

307

Matrix Operations
Array Functions

Array Functions

System Functions

The function statement causes each element in the operand array to be evaluated
by the specified function. The result becomes the corresponding element of the
result array. Syntax for this statement is as follows:

 MAT result array = function (operand array)

The function must be a single argument system function like ABS or SQR. User
defined functions are not allowed.

For example, the following program line assigns the square root of each element
in arrayA to the corresponding element in arrayB:

100 MAT B=SQR(A)

The SUM Function

The SUM function returns the sum of all elements in an array.

 SUMoperand array

The following two sequences are equivalent:

10 M A(10,10)=SUM A 10 FOR J=1 TO 10
20 I=SUM A 20 FOR K=1 TO 10

30 I=I+A(J,K)
40 NEXT K
50 NEXT J

The ROW Function

The ROW function returns the number of rows in the array according to its cur-
rent working size. The number of rows corresponds to the subscript which is sec-
ond from the right.

 ROWoperand array

The COL Function

The column function returns the number of columns in the array according to its
current working size. The number of columns corresponds to the rightmost sub-
script.

 COLoperand array

308

Matrix Operations
Matrix Operations

Matrix Operations

The statements described next use either matrix arrays or vectors.

MAT . . . CSUM

The sums of all the columns of a matrix can be found by using the MATCSUM
statement. Syntax for this statement is as follows:

 MAT result vector = CSUMoperand matrix

Each element in the result vector is the sum of the corresponding column of the
operand matrix.

For example:

| 2 5 7 |
Matrix A =

| 9 8 1 |

MAT B = CSUM A

Vecto r B = | 11 13 8 |

The result vector is redimensioned.

MATRSUM

The sums of all the rows of a matrix can be found by using the MATRSUM state-
ment. Syntax for this statement is as follows:

 MAT result vector = RSUMoperand matrix

Each element in the result vector is the sum of the corresponding row of the oper-
and matrix.

For example:

| 2 4 6 8 |
Matrix A =

| 1 3 5 7 |

MAT C = RSUM A

| 20 |
Vector C =

| 16 |

The result vector is redimensioned.

309

11

System Clock

The clock can be used to read the date, time of day, or the seconds elapsed since 1
January 1970. It can also be used to trigger events in an Eloquence program.

NOTE: The date and time of the system clock is set by the system administrator through HP-UX
commands. If you are transferring programs from an HP 260 environment and they contain
the SET DATE TO or SET TIME TO statements, you will receive Error 302 (date and time
has already been set).

310

System Clock
Returning the Current System Time and Date

Returning the Current System Time and Date

There are two functions provided as part of the Eloquence language which return
the current time and date. They are TIME$ and DATE$.

The TIME$ Function

The TIME$ function returns the current system time. Syntax for this function is as
follows:

 TIME$

 TIME$ (format string)

When TIME$ is executed without an argument, it returns the configured value
defined in the Eloquence configuration file "eloqd.cfg".

In addition, you can now specify an arbitrary format. The format depends on the
operating system where Eloquence is running. On HP-UX see date(1) and strf-
time(3) for more information on the time format.

Example:

TIME$("%H:%M:%S") --> returns 11:35:45

The DATE$ Function

The DATE$ function returns the current system date. Syntax for this function is as
follows:

 DATE$

 DATE$(format string)

When DATE$ is executed without an argument, it returns the configured value
defined in the Eloquence configuration file "eloqd.cfg".

In addition, you can now specify an arbitrary format. The format depends on the
operating system where Eloquence is running. On HP-UX see date(1) and strf-
time(3) for more information on the time format.

Example:

DATE$("%Y-%m-%d %H:%M") --> returns 1997-01-14 14:37.

311

System Clock
Measuring Elapsed Time

Measuring Elapsed Time

The CLOCK Function

The CLOCK function is ideal for measuring the time elapsed between two exter-
nal events. It returns the number of milliseconds elapsed since a fixed date in the
past (currently 1 January 1970). Syntax for this function is as follows:

 CLOCK

312

System Clock
Programmed Delays

Programmed Delays

The WAIT Statement

The WAIT statement delays program execution a specified number of millisec-
onds before continuing. Syntax for this statement is as follows:

 WAIT [numeric expression]

Thenumeric expression can range from -2147483648 through 2147483647 (about
596 hours); a negative number defaults to 0. The wait can be interrupted by press-
ing BREAK or a user-defined special function key (softkey or SFK).

Consider the following program extract:

2010 WAIT 8000

The WAIT command with a time interval (in milliseconds) provides the specified
delay. However, this approach has the following potential difficulties:

1 The resolution of the timed WAIT command is one millisecond.

2 The delay of a timed WAIT command is terminated when any software interrupt con-
dition becomes true and the specified action command occurs. Software interrupt con-
ditions include softkeys,BREAK key, etc.

3 Although software interrupts may be inhibited by means of the DISABLE command,
this programming approach is not the friendliest to the end-user. Disabling software in-
terrupts means that the Eloquence program is unable to detect conditions, such as input
available, during the delay.

NOTE: Although the CLOCK function can be used to establish an arbitrary programmed delay,
total computer system performance may suffer. Consider the following program extract:

2010 Start=CLOCK
2020 WHILE CLOCK-Start%<8000
2030 END WHILE

313

System Clock
Programmed Delays

NOTE: This code results in an eight second programmed delay; however, the delay is a busy wait,
meaning that the program demands processor execution time for the entire period of the
delay. On a multiple user configuration, another process would effectively execute at half
speed during the eight seconds.

The SLEEP Statement

The SLEEP statement behaves like WAIT unless executing in BACKGROUND.
BACKGROUND is defined as redirecting stdout or setting -b flag on command-
line. If executing in BACKGROUND the WAIT statement behaves differently:

• timed delays are ignored;

• unconditional WAIT results in reading the next key from stdin.

This behaviour is acceptable for most programs. But if a program is dealing with
external devices (e.g. modems or BDE) this may make it impossible to execute
such programs in BACKGROUND.

Sample code:

 ON KEY#8:”EXIT” GOTO E
 REQUEST #11
 PRINTER IS 11
 ON INPUT #11 GOSUB P
 WAIT
E: STOP

P: A$=AREAD$(11)
 ...
 PRINT “>”
 WAIT 500
 PRINT “<”
 RETURN

This program works well and may be used to get data from PORT #11 until
KEY#8 is pressed. Now we are in BACKGROUND - what happens is as follows:
The WAIT statement will read the next line from stdin. If there is no more line on
stdin the program will be terminated at once. The only valid input is “:KEY #8”
which will terminate the program. The timed DELAY in the subprogram will be
ignored. The program will not work.

The solution for the above problem is the SLEEP statement. If you replace the
WAIT statement with a SLEEP statement, this program will behave in back-
ground the same as in foreground.

NOTE: Don’t exchange WAIT with SLEEP statement without further investigation: SLEEP will
not read stdin, so it’s impossible to trigger a key “press” via stdin.

314

System Clock
Event Scheduling

Event Scheduling

Eloquence provides a mechanism to do efficient and straightforward scheduling of
future events without using programmed delays.

The ON DELAY Statement

The ON DELAY command schedules a software interrupt after a specified num-
ber of tenths of a second have elapsed.

The specified interval must be an integer number of milliseconds greater than 100
and less than or equal to 231−1. This value provides a time in milliseconds that is
in the range 100 to 231−1. The resolution of software interrupts is one millisecond.
This means that although the elapsed time from the execution of the ON DELAY
command to the first software interrupt may be less than one second, the operating
system will provide (assuming the Eloquence program does not fall behind) sub-
sequent software interrupts at the precise interval specified.

For example, if you wanted to schedule a software interrupt every 5.8 seconds,
you would use:

10 ON DELAY 5800 GOTO ...

Note that the ON DELAY statement is active every 5.8 seconds (not for just one
5.8 second interval). You must use the OFF DELAY statement to de-activate the
ON DELAY statement.

An interrupt triggered by an ON DELAY statement sets the value of CURKEY to
55.

The OFF DELAY Statement

The OFF DELAY command cancels the scheduled future software interrupts.

 OFF DELAY

ON DELAY delay spec

GOTO line id

GOSUB line id

CALL subprogram name

315

12

Multiple Task Programming

Eloqence provides the ability to run multiple programs concurrently from the
same terminal. This ability is referred to as “multi-tasking.” Multi-tasking is con-
trolled by five statements—REQUEST #, ATTACH #, DETACH, ATTACH, and
RELEASE #. This chapter describes multi-tasking as well as how to control the
shared use of peripherals, files, and databases.

NOTE: This feature is not available on the Windows NT and Linux platform.

316

Multiple Task Programming
Primary and Secondary Tasks

Primary and Secondary Tasks

A primary task is the process or session that is started when you enter Eloquence.
From a primary task, any Eloquence operation can be performed (for example,
running and editing programs, printing output, or communicating with plotters or
bar code readers).

A secondary task, like a primary task, is a process or session; however, a second-
ary task is startedfrom a primary task using the REQUEST # and ATTACH #
statements (discussed later in this chapter). In other words, a secondary task is
owned by a primary task. There can be more than one secondary task per primary
task. The maximum number of secondary tasks allowed depends upon what has
been defined by the system administrator in the global configuration file. One pri-
mary task can have a maximum of nine secondary tasks. Each secondary task is
assigned a TASKID (or USRID), just as with primary tasks. Each secondary task
is referenced by its unique TASKID.

Different types of programs can run in secondary tasks; however, any job that runs
in a secondary task must require very little interaction with a user. Typical exam-
ples are updating databases from transaction files, generating large records, and
generating reports.

A primary task can attach to any secondary task, as long as the secondary task is
not currently owned by another primary task. Ownership allows “terminal attach-
ment” by the primary task and, at the same time, inhibits access to the secondary
task by other users.

317

Multiple Task Programming
Configuration Requirements

Configuration Requirements

To use the TASK feature you should enter a number larger than zero into the
NTASKS line in the global configuration file. For each secondary task required,
raise the number next to NTASKS by one. Make sure that the number of NUSERS
is large enough, as NUSERS represents the sum of primary tasks and secondary
tasks.

318

Multiple Task Programming
Multi-Tasking Statements

Multi-Tasking Statements

The five statements that control multi-tasking are summarized below. All state-
ments can be executed from the keyboard or within a program. They provide the
capability for a primary task and one or more secondary tasks to share a terminal
by allowing the primary task to attach the terminal to those tasks that require
attention from the user.

NOTE: To execute a program that contains the REQUEST# and ATTACH # statements, start
Eloquence by typingeloq and then run the program from within Eloquence. If you start
Eloquence by typingeloq program name when you have a program that contains
these statements, the program sets up a secondary task and then the same program that
started the secondary task runs in the secondary task. In other words, the same program
running in the primary task runs in the secondary task.

The REQUEST # Statement

The REQUEST # statement can only be executed from a primary task. Its syntax
is as follows:

 REQUEST #taskid [,result]

It requests the ownership of a secondary task whosetaskid is specified. The
optionalresult parameter indicates the outcome of the request. Omitting this
parameter will cause an execution error if the request is unsuccessful. This state-
ment must be executed successfully before a subsequent ATTACH # statement
can be executed for the correspondingtaskid.

The ATTACH # Statement

The ATTACH # statement can only be executed from a primary task. Its syntax is
as follows:

 ATTACH # taskid [,result]

Its function is to switch the terminal from the executing primary task to the desig-
nated secondary task whosetaskid is specified. The optionalresult parameter indi-
cates the outcome of the statement. Omitting this parameter will cause an
execution error if the statement is unsuccessful. The secondary task must have
previously been REQUESTed by the primary task. Note that when you attach to a
secondary task, the primary task continues to operate.

319

Multiple Task Programming
Multi-Tasking Statements

The ATTACH Statement

Its syntax is as follows:

 ATTACH

Operator control (that is, the terminal) is passed to the DETACHed task executing
the ATTACH statement. The ATTACH statement can be executed in primary or
secondary task. However, if executed in a secondary task and the terminal is
assigned to another secondary task (another ATTACH #), it will be ignored.

Example:

 10 DETACH
 20 WAIT 5000
 30 DISP “Done!”
 40 ATTACH
 50 END

ATTACH to a secondary task; run the program. The terminal will switch back to
primary task if executing DETACH statement. After 5 seconds the terminal will
switch back to secondary task.

The DETACH Statement

The DETACH statement can only be executed from a secondary task. Its syntax is
as follows:

 DETACH

Operator control (that is, the terminal), is passed from the secondary task to the
primary task that owns it.

The DETACH statement can also be executed by pressingCTRL D. This can be
used when the user is unable to enter the DETACH statement because the key-
board is not enabled.

The RELEASE # Statement

The RELEASE # statement can only be executed from a primary task. Its syntax
is as follows:

 RELEASE #taskid

Its function is to terminate the ownership of the specified secondary task. After
this statement is issued, another primary task can then REQUEST that secondary
task number.

320

Multiple Task Programming
Multi-Tasking Statements

NOTE: If this statement is issued while a program is still running in the secondary task, that
program will abort.

321

Multiple Task Programming
Example Program Using TASK

Example Program Using TASK

If you have read and understood the previous chapters, programming with TASK
is simple and straight-forward. The following is an example of a simple task that
generates a report in a secondary task (assuming that the Gen_report routine does
the actual report generation).

10 DIM File_name$[6]
20 INPUT ”Please enter first file name ”;File_name$
30 WHILE File_name$ <> ”STOPIT”
40 CALL Gen_report(File_name$)
50 INPUT ”Please enter next file name ”;File_name$
60 END WHILE
70 END

This program can be initiated by explicitly requesting a secondary task using the
REQUEST and ATTACH commands, entering the program, and executing RUN.
The operator can then pressCTRL D to return to the primary task.

The primary task can interact with the secondary task (taskid #2 in this example)
in the following manner:

 ATTACH #2

Once the secondary task is obtained, the file name prompt will be displayed:

 Please enter first file name

Now enter the file name desired. Once the file name is entered, the secondary task
will be underway. Now enter the DETACH statement. This will cause the terminal
to switch back to the primary task. A return from subroutine Gen_report will
cause the secondary task to wait for another file name to be input. The operator of
the terminal can now repeat the process to resume the secondary task. Note that
this program does not provide a way to inform the primary task when one file is
processed.

Error Codes

The error codes have different meanings for the REQUEST #, ATTACH #, and
DETACH statements. Please see chapter , TASK Errors, in Appendix C for infor-
mation about these error codes.

322

Multiple Task Programming
HP-UX Background Processing

HP-UX Background Processing

Besides the multi-tasking features offered inside Eloquence, you have the possib-
lity to use HP-UX background processes. Within the HP-UX environment there
are two options. The first option is to run your Eloquence program in HP-UX
background. The second option is to run your Eloquence program in HP-UX fore-
ground and then switch it to background. Each option is described below. All
commands discussed are executed from the HP-UX prompt.

Option One

Eloquence distinguishes between two major operating modes: Interactive mode
and background mode. Interactive mode is assumed when stdout is connected to a
tty device (e.g. your terminal). Background mode is assumed when stdout is con-
nected to anything else but a tty device (e.g. pipe, file). In background mode, the
screen buffer is not updated to your terminal. All screen output is put only in the
internal screen buffer.

You may run Eloquence from the HP-UX prompt using the following syntax:

 eloqcore [-b]program name [outfile] [infile] [&]

If you redirect stdout to file or pipe, Eloquence will automatically run in back-
ground mode. Specifying the

 -b[ackground]

switch in the command line will put Eloquence in background mode indepen-
dently of the output device.

If you execute the PRINTER IS STDOUT statement in your program, you can
redirect printed output into file or pipe. The BACKGROUND function returns 1 if
operating in background mode.

Example:

 ! SAMPLE.PROG
 IF BACKGROUND THEN PRINTER IS STDOUT
 FOR I=1 TO 10
 PRINT “THIS IS LINE #”;I
 NEXT I
 PRINTER IS 8

 eloq SAMPLE | lp &

323

Multiple Task Programming
HP-UX Background Processing

NOTE: If run from cron, at or batch, Eloquence will operate in background mode. If output from
an Eloquence program is piped to another command (for example, "eloq TEST
| lp &", terminal output is automatically suppressed. The -b is thus not necessary, but the
PRINTER IS STDOUTis.

Option Two

Under this option, you start your Eloquence program from HP-UX foreground
and then switch it to background.

The first step in this process is to define a suspend character. The suspend charac-
ter is used to suspend the execution of a program so that it can be put into back-
ground. To define a suspend character, execute the following command sequence:

 stty suspsusp char

Replacesusp char by pressing any key combination. For example,stty susp
CTRL Z . TheCTRL Z displays as ^Z.

Once a suspend character is defined, start the program in foreground by issuing
the command:

 eloqcoreprogram name

Replaceprogram name with the name of an Eloquence program. You donot have
to specify the extension .PROG.

The next step is to switch the program to HP-UX background processing. To
make this switch perform the following steps:

1 Suspend the program, using the pre-defined suspend character (for example,CTRL Z).
When the suspend character is pressed, the HP-UX prompt appears.

2 Execute the commandbg [% process number] . If bg is entered by itself, the pro-
gram currently suspended will be put in background in the first available process. If the
parameter %process number is added, the program currently suspended will be put in
background in the specified process. Once the program is in background, it resumes ex-
ecution. While the program is executing in background, you can do anything in fore-
ground except logout. You can have several programs running in background.

To switch a program in background to foreground, use the following command:

 fg [%process number]

The optional %process number is only needed if more than one program is run-
ning in background. Theprocess number indicates in which background process
the program is running.

324

Multiple Task Programming
HP-UX Background Processing

Starting Eloquence from an Eloquence program.

It is also possible to start Eloquence from an Eloquence program. This Eloquence
will terminate if the program is terminated.

1000 ! RE-STORE “FG,TEST”
1010 ! This program is intended to control FG,TEST in
1020 ! background.
1030 !
1040 ! Run eloqcore process, wait until finished
1050 !
1060 Info$=”’PASS #1’”
1070 COMMAND “!INFO=”&Info$&”;export INFO;eloqcore BG,TEST 2>&-”
1080 COPY “BG,TEST”
1090 !
1100 ! Start eloqcore process, run asynchroneously
1110 !
1120 Info$=”’PASS #2’”
1130 COMMAND “!INFO=”&Info$&”; export INFO;eloqcore BG,TEST
</dev/null >/dev/null 2>&1 &”
1140 END

1000 ! RE-STORE “BG,TEST”
1010 ! This program is intended to run in the background
1020 ! controlled by a foreground eloquence (FG,TEST)
1030 !
1040 ! Purge file and recreate
1050 ON ERROR GOTO E
1060 PURGE “BG,TEST”
1070 E: OFF ERROR
1080 CREATE “BG,TEST”,0
1090 ASSIGN #1 TO “BG,TEST”
1100 !
1110 ! Put some data into file
1120 PRINT #1;”DATE = “&DATE$
1130 PRINT #1;”TIME = “&TIME$
1140 PRINT #1;”PID = “&VAL$(PID)
1150 PRINT #1;”TASK = “&VAL$(TASKID)
1160 PRINT #1;”INFO = “&GETENV$(”INFO”)
1170 !
1180 ! Do some work
1190 Start=CLOCK
1200 FOR I=1 TO 10000
1210 NEXT I
1220 Seconds=(CLOCK-Start)/1000
1230 PRINT #1;”USED = “&VAL$(Seconds)
1240 !
1250 ! Done
1260 ASSIGN * TO #1
1270 END

325

Multiple Task Programming
Programming Considerations

Programming Considerations

When developing or modifying programs to be run on a multiple-user system,
consideration should be given to resource management. Such questions should be
asked as: should databases be shared or is exclusive access needed? How can a
program guarantee that its output is not interrupted by another program?

Once the resource questions are answered, performance needs to be considered.
For example, when is instant printer output needed and when can spooling be
done? Should the database be updated or will a transaction file be kept?

Resource Management

Resources such as output devices, files, and databases are generally shared. A pro-
gram requests exclusive access to a resource using one of the Eloquence state-
ments described next. Until the program releases the resource, no other program
can use it. If a program requests a resource and the resource is being used exclu-
sively by another program, the request can be queued.

A problem could arise if one program is getting exclusive access to several
resources and does not allow other programs to access it. The other programs have
to wait. Therefore, a resource should only be requested when it is immediately
needed and then should be released after being used.

Another problem is called “deadlock”. This occurs when one program has exclu-
sive access to one resource, and then requests access to another. If the other
resource is being used exclusively by a second program that then requests the
resource locked by the first program, both programs will halt indefinitely.

Output Device Control

Output directed to a CRT is displayed on the terminal from which the program is
run.

For example:

100 PRINTER IS 8
110 PRINT ”HELLO”
120 END

When this sequence is run from the terminal, it prints HELLO on the terminal dis-
play.

326

Multiple Task Programming
Programming Considerations

A printer connected to a terminal (a “local printer”) has an address of 10. A printer
connected to one terminal cannot be accessed by another terminal. Any terminal
can access its own printer and any printers connected directly to the computer.

If several terminals use the same printerand that printer isnot spooled, confusion
could result if each terminal outputs a line or two. To avoid the confusion, use the
REQUEST and RELEASE statements, or use the printer as a spooled device.
These statements are fully described in page 249 .

File Access

If more than one program is going to access a file, some handshaking must be
done before one program changes data that another program is reading. The
ASSIGN statement’s class list parameter defines how the file is accessed by each
program. ASSIGN is fully described in page 195 . The syntax is listed here for
convenience.

 ASSIGN #file number TO file spec [,return variable] [;class list]

The access keyword can be EXCLUSIVE, UPDATE or READONLY. If
EXCLUSIVE access is requested, only the requesting program can use the file. If
another program is already using the file, EXCLUSIVE access is not granted. In
UPDATE access, several programs can access the file, but a LOCK must be per-
formed before any writes are allowed to the file. In READONLY access, several
programs can access the file but none may update it.

The LOCK and UNLOCK statements are described in page 195 . The syntax and
an example using ASSIGN and LOCK are shown here for convenience.

 LOCK #file number [,wait variable]

 UNLOCK #file number

100 ASSIGN #1 TO “Accnt”,Return;UPDATE
110 IF Return=4 THEN GOTO Queue
120 IF Return<>0 THEN GOTO Error
130 Wait=1
140 LOCK #1,Wait
150 ! Read then modify
 .
 .
 .
200 UNLOCK #1

327

Multiple Task Programming
Programming Considerations

Database Locking

A database may be shared by more than one program, or individual data sets or
data items may be locked for exclusive access. (The entire database can also be
locked.) All the database statements are described in theEloquence DBMS Man-
ual. They are summarized here with references to multiple users.

DBOPEN

A database may be opened in one of these modes—shared access, exclusive
access and read-only access. In shared access mode (mode = 1), multiple users
can read from the database. They can modify the database only after locking the
data set or data record to be modified. In exclusive access mode (mode = 3), only
one user can read from or write to the database. In read-only access mode (mode =
8), many users can read from the database, but none may modify it. Syntax for the
DBOPEN statement is as follows:

 DBOPEN (base$,pass$,mode,status(*))

LOCKING

The three statements—PREDICATE, DBLOCK and DBUNLOCK—are used
together to gain exclusive access of the database or data sets and data items.

The PREDICATE statement is used when more than one data set is to be locked
when data items are to be locked. It predefines the data sets and statements to be
used by a DBLOCK. These sets and items are referenced by a later DBLOCK by
quoting thepredicate$ parameter in the DBLOCK statement. Syntax for the
PREDICATE statement is as follows:

 PREDICATEpredicate$ FROMset1$ [,item1$ [,relop$,value]]

 [;set2$. . . [;setn$. . .]]

The DBLOCK statement uses the predicate string defined in the PREDICATE
statement or a data set name to lock the desired data sets and data items.

 The DBUNLOCK statement relinquishes all locks on a database. Syntax for this
statement is as follows:

DBLOCK (base$,

set

set$

predicate$

,mode,status(*))

328

Multiple Task Programming
Programming Considerations

Under the current version of Eloquence, the parametersset, set$, andpredicate$
are ignored and the entire database is unlocked. These parameters are reserved for
future use.

For example:

100 Base$=”DBASE”
110 Pass$=”USER”
120 DBOPEN (Base$,Pass$,1,Status(*))

.

.

.
180 Item$=”MFG”
190 Set$=”COST”
200 PREDICATE Predicate$ FROM Set$,Item$,”<”,100

.

.

.
300 DBLOCK (Base$,Predicate$,1,Status(*))

.

.

.
400 DBUNLOCK (Base$,P$,1,Status(*))

DBUNLOCK (base$,

set

set$

predicate$

,mode,status(*))

329

Multiple Task Programming
Performance Considerations

Performance Considerations

When deciding how to manage system resources, some thought needs to be given
to performance. For example, should a program wait for a printer to become free
or should it spool its output? If waiting is a frequent occurrence, should another
printer be added to the computer? Should a printer be added to a terminal?

Database Performance

When multiple users are accessing a database, only the part which is to be modi-
fied should be locked. This method allows access to other parts of the database
without waiting for each program to complete its processing.

Another method is to modify database information indirectly. Any changes are put
in a transaction data set or file. Then, at the end of the day, one program locks the
entire database and processes the transaction. This method allows more rapid
access to the database during the day and ensures that the data remains constant.

Output Performance

If an output bottleneck is caused by having only one system printer, there are four
options available. The first option is to use the HP-UX spooler. For this you must
define the printer as type PIPE in the global configuration file eloq.config and pipe
the output to the HP-UX command lp, with appropriate parameters. You can pipe
the output to any HP-UX command, but lp is usually used. Of all the four options
available, this option is preferable.

The second option is for each program to send its output to a spool file. Then a
program can output the spool file contents to the printer at the end of the day or at
any specified time. This ensures that other programs will not tie up the printer
when output is needed immediately. This is accomplished by using a file name as
the device specifier in the PRINTER IS statement. Spool files are described in
page 249 . Syntax for the PRINTER IS statement is as follows:

 PRINTER IS "file name"

To output the file, use the COPY statement.

PRINTER IS 0

COPY ”file name ”

330

Multiple Task Programming
Performance Considerations

The third and fourth options include adding a printer to the system. The printer
can be added to the system for all terminals to use, or it can be added to a terminal.
If one terminal is continually using a printer but the other terminals only use a
printer occasionally, add the printer to the busy terminal. If all terminals are keep-
ing the printer busy, add a new printer to the system.

331

Multiple Task Programming
Functions for Task Control

Functions for Task Control

The TSTAT Function

 TSTAT (taskid)

The TSTAT function returns the status of the specified task.

The OWNID Function

 OWNID

The OWNID function returns the USRID of the owner of the executing task. A
zero is returned if the executing task is unowned.

The XOWNID Function

The XOWNID function returns the USRID of a specified task. A zero is returned
if it is a primary task or not REQUESTed

Example:

XOWNID (15)

returns the owner of TASK 15.

Table 21 Summary of Image Symbols

Return Value Description

0 Task is in idle state (that is, not in any of the other states).

1 Task is in input state.

2 Task is in wait state.

3 Task is executing, but blocked for I/O.

4 Task is in running state.

332

Multiple Task Programming
Functions for Task Control

The SHOWTASK Function

The SHOWTASK function outputs information about eloquence tasks to the SYS-
TEM PRINTER.

TASK OWNER STAT UID NAME PID
---- ----- ---- ----- --------- -----
 12 0 0 Y 102 mike 27624
 15 12 0 N 102 mike 27625
 16 12 0 N 102 mike 27626

TASK: Task number.
OWNER: Owner if secondary task or 0.
STAT: TSTAT of taskid and attached flag (Y=attached to terminal).
UID: HP-UX user id.
NAME: HP-UX user name.
PID: eloqcore process id.

The SIGNAL statements

Eloquence can use the USR1 signal to communicate with either HP-UX processes
or another Eloquence process.

ON SIGNAL Branches to a specified program sequence when USR1 signal is
caught

OFF SIGNAL Cancels previous ON SIGNAL

SEND SIGNAL # Send SIGUSR1 signal to specified taskid

The ON SIGNAL Statement

The ON SIGNAL statement sets up the branching condition which will occur if a
USR1 signal is caught.

The branch occurs immediately after the current program line is executed.

Here is an example sequence which checks for the USR1 signal and branches to a
routine to output some debug information.

100 ON SIGNAL GOSUB Signal
110 ON HALT GOTO Stop
120 LOOP
130 I=I+1
140 END LOOP
150 Stop:!
160 DISP “I=”;I

ON SIGNAL

GOTO line id

GOSUB line id

CALL subprogram name

333

Multiple Task Programming
Functions for Task Control

170 END
180 Signal:!
190 DISP “I=”;I
200 RETURN

The ON SIGNAL condition is cancelled after SCRATCH, STOP, END or RUN.

To cancel any previous ON SIGNAL condition, use the OFF SIGNAL statement:

 OFF SIGNAL

The SEND SIGNAL # Statement

The SEND SIGNAL # statement will send a USR1 signal to the specified taskid.

 SEND SIGNAL #taskid

It is also possible to send USR1 signal from shell (or using the COMMAND state-
ment) but this way you don’t you have to know the process id of the destination
process.

NOTE: The HP-UX protection scheme prohibits sending signals to a process of another user.

334

Multiple Task Programming
Functions for Task Control

335

13

Asynchronous Devices

In order to address an asynchronous port with TIO statements, an appropriate
entry must be made in the global, group, or user configuration file. The entry must
have the following format:

 PORTport# device file

336

Asynchronous Devices

The terminal input/output (TIO) statements provide a means to connect RS-232
asynchronous devices to your computer system. The devices may be terminals,
printers, or computers.

This chapter describes the TIO statements and provides programming approaches
and tips. Note that TIO error codes are listed in page 427 .

An application program can be written to send output to and receive input from
asynchronous devices. TIO statements allow the application program to determine
the state of each asynchronous port. The program uses PRINTER IS, PRINT ALL
IS or SYSTEM PRINTER IS (coupled with the device address) to direct output to
the remote device.

The port number can be between 11 and 20, butcannot be the same as any device
address. The device file must have read and write capabilities. Here is an example
PORT entry on HP-UX:

PORT 15 /dev/tty1p4

The interface parameters (such as baud rate) can be adjusted with the HP-UX stty
command.

NOTE: This manual assumes that you are familiar with your computer system and that you have a
good understanding of Eloquence. It is also assumes that you have read the manuals which
accompany the remote printers and terminals and that you understand the devices.

337

Asynchronous Devices
TIO Statements

TIO Statements

The ON INPUT # Statement

The ON INPUT # statement is similar to the ON KEY # statement, in that the pro-
gram continues execution until a preset condition occurs. When that condition
occurs, the program branches to a specified routine.

Before an ON INPUT # statement is executed, the program must have exclusive
use of the device. This is done with the REQUEST statement which is described
later in this chapter.

The ON INPUT # statement explicitly enables input from a terminal and informs
the system of the desired action to be taken when a complete input line is
received. Syntax for this statement is as follows:

 ON INPUT #port no [branching statement]

Thebranching statement can be a GOTO, GOSUB, or CALL statement. Here is a
description of each:

GOTO When an interrupt occurs, the program branches to the speci-
fied line and continues execution. The program cannot return to
the line where the interrupt occurred. The GOTO statement
does not store a return address, while the GOSUB and CALL
statements do.

GOSUB When an interrupt occurs, the program branches to the subrou-
tine. After the subroutine has been executed, the program
returns to the line where the interrupt occurred.

CALL When an interrupt occurs, the program branches to the subpro-
gram. After the subprogram has been executed, the program
returns to the line where the interrupt occurred. Parameters can-
not be passed.

Subprograms create a new environment during their execution. If an interrupt
condition occurs during a subprogram and the action is another CALL, then the
interrupt is serviced. If the action is a GOTO or GOSUB, the interrupt is not ser-
viced until the subprogram exits with a SUBEXIT or SUBEND.

An interrupt generally occurs after execution of the current line. However, if an
interrupt occurs during execution of a WAIT or INPUT statement, execution of
the statement is suspended while the interrupt is serviced.

338

Asynchronous Devices
TIO Statements

To prevent interrupts during critical portions of a program, use DISABLE state-
ments to enclose the lines. Once the DISABLE statement is executed, no inter-
rupts occur until the ENABLE statement is executed.

The ON INPUT # statement remains in effect until input is received or an OFF
INPUT # statement is executed.

If the branching statement is omitted, TIO assumes that an ON INPUT # state-
ment specifying a branch was previously executed.

For example, assume the subroutine Txy is called whenever input is available.
The first ON INPUT # statement would have a branching statement of GOSUB
Txy. When input is received from the terminal an interrupt occurs and program
execution continues in the Txy subroutine. Before the subroutine is ended with a
RETURN, the ON INPUT # statement with no branch is executed. When input is
received from the terminal, an interrupt occurs and the action statement in the pre-
vious ON INPUT # statement, GOSUB Txy, is executed.

Handling of input data:

 +--------------+ +--------------+ +--------------+
 | remote | | HP-UX | | Eloquence |
 | terminal |---->| tty device |---->| program |
 | | | driver | | |
 +--------------+ +--------------+ +--------------+

HP-UX tty device driver collects data from the remote terminal. The behaviour
and transmission parameters (e.g. baud rate, echo) depend on the configuration of
tty device driver (via stty). Whenever the tty device driver signals that data is
available, Eloquence will read data into an internal 512 byte buffer. If ON INPUT
is active an interrupt will be generated.

It is possible to configure the HP-UX device driver characteristics from an Elo-
quence program. MAPPNTR$ (port number) will return the name of the HP-UX
device file which is mapped to that port number.

(For more detailed information see references tostty andtermio(7).)

 Port = 15
 REQUEST Port
 COMMAND “!stty 2400 icanon icrnl <”&MAPPNTR$(Port)
 ...
 RELEASE Port

The AREAD$ Function

The string function AREAD$ transfers data from the input buffer to a string vari-
able. Syntax is as follows:

Variable$ = AREAD$(port number)

339

Asynchronous Devices
TIO Statements

If the AREAD$ function is attempted when no terminal input line is present in the
input buffer, an empty string is returned. The carriage return character is not trans-
ferred to the string variable.

When the program has completed processing the input, the program explicitly re-
enables further terminal input by means of the ON INPUT # statement.

Examples:

REQUEST 12,Status
IF Status=1 THEN Queue
ON INPUT #12,3 GOSUB In_12
.
.

In_12: Next_line$=AREAD$(12)
.
.
RELEASE 12
RETURN

Queue: !
REQUEST 12
ON INPUT #12 GOSUB Input
.
.

Input: Next_line$=AREAD$(12)
IF Next_line$=”EXIT” THEN GOTO Stop_now
.
.

530 ON INPUT #12
540 RETURN
550 Stop_now: RELEASE 12
560 RETURN

The OFF INPUT # Statement

This cancels a previous ON INPUT # statement. The syntax is as follows:

 OFF INPUT #port number

Data remains in the buffer and can be read with AREAD$. No further interrupts
are created if data arrives from that port.

Examples:

OFF INPUT #12
.
.
.
Device=12
.
.
OFF INPUT #Device

340

Asynchronous Devices
TIO Statements

The AOVFL function

 AOVFL (port number)

returns 1 if the TIO buffer has overflowed, otherwise 0. AREAD$ resets the buffer
flag.

341

Asynchronous Devices
Eloquence Statements Used With TIO

Eloquence Statements Used With TIO

Four Eloquence statements and one function are used with TIO—REQUEST,
RELEASE, ENABLE, DISABLE, and CURKEY. The REQUEST and RELEASE
statements are described fully in page 249 , while ENABLE, DISABLE, and
CURKEY are in page 151 . They are briefly described here for your convenience.

The REQUEST and RELEASE Statements

Before an ON INPUT # statement is executed, the program must have exclusive
access to the required device.

Successful execution of a REQUEST statement addressing a terminal causes TIO
to implicitly execute the OFF INPUT # statement. Syntax of the REQUEST state-
ment is as follows:

 REQUESTport number [,return variable]

The REQUEST statement first checks to see if the requested device is a printer or
a port. Printers and ports are defined in the user, group, and global configuration
files using the PRINTER and PORT statements.

If the return variable is omitted and the device is already reserved by another pro-
gram,ERROR 131 results. If the requested device is not defined in the user, group,
or global configuration file,ERROR 132 results. If the user has no access rights or
if there are currently more than 4 ports in use,ERROR 313 - Can’t access
port results.

If the requested device is a printer, it then checks if it is spooled or not. Spooled
printers are indicated by “PIPE” in the PRINTER statement in a configuration file.
The word “FILE” in a PRINTER statement indicates a non-spooled printer. If the
requested printer is not spooled, the corresponding HP-UX device file is locked,
thereby reserving the device for your use. This is not necessary for a spooled
printer.

If the requested device is a port, the corresponding HP-UX device file is locked,
reserving it for your use. The user must have read and write permission to the
port, e.g.crw-rw-rw- 1 root bin 58 0x000005 Aug 29 14:36 /dev/
tty0p5

The value returned to thereturn variable, if present, is based upon the following
criteria:

• 0 returned if request a spooled printer.

342

Asynchronous Devices
Eloquence Statements Used With TIO

• 1 returned if request a port or non-spooled printer that is already reserved.

• 0 returned if request a port or non-spooled printer that is available.

Reserved access to a port or non-spooled printer is relinquished by the RELEASE
statement. Note that it is not necessary to RELEASE a spooled printer. This is
because a spooled printer is not a directly accessed device. Syntax for the
RELEASE statement is as follows:

 RELEASEport number

The DISABLE and ENABLE Statements

The DISABLE statement inhibits all interrupts (including ON KEY # interrupts);
interrupts are still recorded. When the ENABLE statement is given, interrupts are
serviced in sequence. Syntax for these statements is as follows:

 DISABLE

 ENABLE

The CURKEY Function

CURKEY is a function which returns a number indicating the source of an ON
condition interrupt. Syntax for this function is as follows:

 CURKEYnumeric variable

The values CURKEY returns are shown in the following table:

Table 22 Summary of Image Symbols

Value Condition

0 No interrupts have occurred

1–24 Softkeys 1 through 24

25–27 Port 11

28–30 Port 12

31–33 Port 13

34–36 Port 14

37–39 Port 15

40–42 Port 16

343

Asynchronous Devices
Eloquence Statements Used With TIO

Three values are allocated for each port. An ON INPUT # interrupt returns the
first value (25 for port 11, 28 for port 12, and so on). The second and third values
(26 and 27 for port 11, 29 and 30 for port 12, and so on) are reserved for future
use.

43–45 Port 17

46–48 Port 18

49–51 Port 19

52–54 Port 20

55 ON DELAY

Table 22 Summary of Image Symbols

Value Condition

344

Asynchronous Devices
Programming with TIO

Programming with TIO

Programming Overview

TIO application programs can control remote terminals which are dedicated to the
application. Since the terminal is not a remote console, the user is not confused by
system messages or error codes. The application program can be tailored to the
terminal user. Passwords and security features embedded in the programs can con-
trol access to sensitive information.

The ON-condition statements overlap I/O and processing. For example, instead of
waiting for a terminal to respond to a prompt, the program does other processing
until a carriage return is received from the terminal. If the input is not received
before processing is finished, the program uses the WAIT statement to explicitly
wait for the input.

Overlapping I/O and processing of other tasks is particularly useful in applica-
tions where several terminals are serviced by a single program. For example:

Programming Tips

The action and consequences of the CALL branching statement as well as not
specifying a branching statement should be understood.

CALL

Program execution in the current environment is suspended when the interrupt
condition is satisfied. A new environment is created and remains in effect until a
SUBEXIT or SUBEND is encountered or another CALL statement is executed.

TERMINAL 1

PROGRAM
(SINGLE TASK)

TERMINAL 2

INPUT

PROCESS
TERMINAL 1

INPUT

PROCESS
TERMINAL 2

INPUT

PROCESS
TERMINAL 1

PROCESS
TERMINAL 2

INPUT

TIME

INPUT

345

Asynchronous Devices
Programming with TIO

The CALL statement is recognized in all successive environments including the
one containing the statement.

This program is a good example of hownot to program with ON-condition state-
ments. When subprogram X is called, the ON INPUT # statement is executed. The
interrupt is defined in subprogram X and in subprogram Z. When both X and Z
are exited, however, the interrupt is no longer defined.

No Branching Statement

Not specifying a branching statement informs the system of the programmer’s
intent to re-establish an interrupt condition in a previous environment. This serves
to turn on the input or output interrupt. It is useful when switching environments
or when changing a port’s input/output state.

10 REQUEST 12
20 ON INPUT #12 CALL X
30 WAIT

100 SUB X
110 A$=AREAD$(12)

170 ON INPUT #12
180 SUBEXIT

Using OFF INPUT # clears the branching statement of the ON INPUT # state-
ment which was executed in the same environment. Therefore, an ON INPUT #
with no branching statement will subsequently be ineffective.

10 REQUEST 12
20 ON INPUT # 12 CALL X
30 CALL Y

10 REQUEST 11
20 CALL X
 *
 *
 *
100 SUB X
110 ON INPUT #11 CALL Y
120 CALL Z
 *
 *
 *
200 SUB Z
 *
 *
 *

SUB Z

SUB X

MAIN
PROGRAM

CALL

CALL

346

Asynchronous Devices
Programming with TIO

100 SUB X
110 OFF INPUT #12
120 PRINTER IS 12 The OFF INPUT #12 and ON INPUT #12
130 PRINT ”...” statements are executed in a different

environment than the initial
180 ON INPUT #12 ON INPUT #12 statement.
190 SUBEXIT

Programming Approaches

Once TIO statements and the concepts are understood, you are ready to begin pro-
gramming. The most useful program approaches are introduced next.

Straight Line Approach

The following program communicates with one terminal. It demonstrates the ease
of programming for one remote device. Later, the same program will be expanded
for multiple terminals.

5 OPTION BASE 1
10 DIM A$[254] ,B$[254]
20 Port=11
30 REQUEST Port
40 PRINTER IS Port ,WIDTH(-1)
50 PRINT ”Please enter your name:”;
60 ON INPUT #Port GOTO Ini
70 WAIT
80 Ini: A$=AREAD$(Port) * Input data from the
90 PRINT ”What’s your street address”&A$&”?”* remote terminal;
100 ON INPUT #Port GOTO In2 * equivalent to LINPUT
110 WAIT * A$ directed to the
120 In2: B$=AREAD$(Port) * main console.

.

.

.

Modular Approach

The modular approach to programming is useful when input from the terminal
will determine which task is to be done.

In the following example, the program accepts a command from the terminal and
the FNInterp function determines the task (X1, X2, and so on) to be done.

5 OPTION BASE 1
10 DIM Commd$[254]
20 Port=11
30 REQUEST Port
40 PRINTER IS Port ,WIDTH(-1) ! This is the default width
for all TIO devices.
50 PRINT “Please enter a command”;LIN(1);”:”;
60 ON INPUT #Port GOSUB Service
70 WAIT
80 END
100 Service: Commd$=AREAD$(Port)

347

Asynchronous Devices
Programming with TIO

110 ON FNInterp(Commd$)+1 GOTO Cmd_err;Call_x1;Call_x2
120 Cmd_err: PRINT “ERROR: COMMAND NOT RECOGNIZED.”
130 GOTO Print_lbl
140 Call_x1: CALL X1(Commd$)
150 GOTO Print_lbl
160 Call_x2: CALL X2(Commd$)
170 GOTO Print_lbl
 .
 .
200 Print_lbl: PRINT “;”;
210 ON INPUT #Port
220 RETURN

Array Addressing Mode

Expanding a program from accepting input from one terminal to accepting input
from several terminals can be accomplished with little difficulty if the initial pro-
gram was designed properly.

In the following example, the initial program is shown in the straight line
approach example:

10 OPTION BASE 1
20 DIM A$(5)[254], B$(5)[254]
30 DISABLE
40 FOR Port=11 TO 14
50 REQUEST Port
60 PRINTER IS Port ,WIDTH(-1)
70 PRINT “Please enter your name:”;
80 ON INPUT #Port GOTO Ini
90 NEXT Port
100 ENABLE
110 WAIT
200 Ini: DISABLE
210 Port=(CURKEY-25)/3+11 !CALCULATE PORT NUMBER
220 A$(Port-10)=AREAD$(Port)
230 PRINTER IS Port,WIDTH(-1)
240 PRINT “What’s your street address “&A$”?”
250 ON INPUT #Port GOTO In2
260 ENABLE
270 WAIT
300 In2: DISABLE
310 Port=(CURKEY-25)/3+11
320 B$(Port-10)=AREAD$(Port)

The DISABLE and ENABLE statements are used to protect critical sections of
code from GOTO interrupts.

This program can communicate with four terminals because Eloquence always
knows where to go when it gets an input line from terminal. Having the system
keep track of program state flow in this manner is called an Implicit State
Machine. This is further discussed later in this chapter.

Executive Mode

348

Asynchronous Devices
Programming with TIO

In the following example the Service subroutine is used as an input/output traffic
manager. It is referred to as an Executive Routine.

5 OPTION BASE 1
10 DIM A$[254], B$[254], Input$[254]
20 DIM Buff$(5)[750]
25 State=1
30 DISABLE
40 FOR Port=11 TO 14
50 PACK USING P1;Buff$(Port-10)
60 REQUEST Port
70 PRINTER IS Port
75 PRINT “Please enter your name:”;
80 ON INPUT #Port GOSUB Service
90 NEXT Port
100 ENABLE
110 WAIT
120 P1: PACKFMT State, A$,B$
130 !
200 Service:DISABLE
205 Port=(CURKEY-25)/3+11
210 Input$=AREAD$(Port)
220 UNPACK USING P1 ;Buff$(Port-10)
230 PRINTER IS Port
240 GOSUB X
250 PACK USING P1;Buff$(Port-10)
260 ON INPUT #Port
265 ENABLE
270 RETURN
280 !
300 X: ON State GOTO S1,S2,S3
310 S1: A$=Input$
320 PRINT “What’s your street address “&A$&”?”
330 State=2
340 RETURN
350 !
360 S2: B$=Input$

This program demonstrates how PACK and UNPACK can be used to swap vari-
ables into and out of a common area. This program also illustrates how to use the
Explicit State Machine approach.

Structured Programming

When the application program addresses one remote device with one task, you
may only need to add a few statements to the current non-TIO program to drive
that device. For example, assume a report is written at the end of the working day.
Instead of outputting the report to the local (default) printer, the report is now to
go to a remote printer. If this is the only remote I/O function the program per-
forms, the only modifications needed are changing the device address in the
PRINTER IS statements in the appropriate places.

349

Asynchronous Devices
Programming with TIO

The creation of a more complex TIO application program, however, usually con-
sists of many tasks which may be executing concurrently. In the TIO environ-
ment, each remote device may be associated with a task which controls the
processing and input/output associated with the others. If interaction is desired
among tasks, however, you must ensure that it happens efficiently.

The multi-tasking environment is more complex than that of sequential program-
ming for one task. The problems demand a highly organized and structured
approach. Without such an approach, you may have a program containing persis-
tent (but unrepeatable, under debugging conditions) interference problems among
the tasks.

Structured programming is concerned with improving the programming process
through better program organization. Structured programming techniques, such as
constructive use of subroutines and subprograms, ensure that a program is under-
standable, easily modified and documented, and easier to debug.

Basic Structural Flow

The following diagram can be used for many TIO applications.

In regard to the above diagram, the following remarks should be made:

Initialize The logic flow begins with the devices being initialized.

START INITIALIZE

IDLE

INPUT
TRAFFIC

MANAGER

TASKS

1

2

3

4

OUTPUT
TRAFFIC

MANAGER

TERMINALS
PRINTERS
COMPUTE

350

Asynchronous Devices
Programming with TIO

Wait Once the initialization is complete, the program waits for input
from one or more of the devices.

Input Traffic Man-
ager Input goes to the Input Traffic Manager routine which initiates

a task.

Tasks Each task is processed according to its priority.

Output Traffic Man-
ager If output is required, the Output Traffic Manager initiates and

completes it to the appropriate device.

Terminals, Printers,
Computer The program waits in an idle state until the next input from the

devices or until one of the traffic managers begins the next task.

Example Program

The program used to demonstrate the Executive Mode of programming was
designed according to the preceding structural flow diagram.

5 OPTION BASE 1
10 DIM A$[254], B$[254], Input$[254]
20 DIM Buff$(5)[750]
25 State=1
30 DISABLE
40 FOR Port=11 TO 14
50 PACK USING P1;Buff$(Port-10)
60 REQUEST Port
70 PRINTER IS Port
75 PRINT “Please enter your name:”;
80 ON INPUT #Port GOSUB Service
90 NEXT Port
100 ENABLE
110 WAIT
120 P1: PACKFMT State,A$,B$
130 !
200 Service: DISABLE
205 Port=(CURKEY-25)/3+11
210 Input$=AREAD$(Port)
220 UNPACK USING P1;Buff$(Port-10)
230 PRINTER IS Port
240 GOSUB X
250 PACK USING P1;Buff$(Port-10)
260 ON INPUT #Port
266 ENABLE
270 RETURN
280 !
300 X: ON State GOTO S1,S2,S3
310 S1: A$=Input$
320 PRINT “What’s your street address “&A$&”?”
330 State=2
340 RETURN

351

Asynchronous Devices
Programming with TIO

350 !
360 S2: B$=Input$
 .
 .

Transaction Driven Applications

The design techniques described here are suitable for the creation of application
programs driven by external events, such as remote terminals controlled by users.
The application program and each user exchange data in an interactive fashion.
The program usually supplies prompts to facilitate communication. The user
might supply commands consisting of keywords and perhaps parameters to direct
the program into specific operating modes and input data when requested by the
current operating mode. In response to user commands (or perhaps by default),
the program may display CRT forms to facilitate data entry and may generate and
transmit reports either directly to the user’s remote terminal or to some other out-
put device. Finally, in response to user commands which cannot be fulfilled, the
program generates messages which give the user the proper course of action.

A transaction consists of a logically complete interchange of prompts, commands,
processing, input data and output reports. A transaction may be as simple as typ-
ing in a single command, in which case the transaction is just the action per-
formed by that command. Transactions should be kept as simple as possible,
otherwise the operational requirements (user training, program reliability, etc.)
become extremely demanding.

Transactions may be categorized as follows:

• Security and overhead operations such as user sign on and sign off.

• Data retrieval operations accessing a database or a normal file in read-only mode. The
objective of the data retrieval may be either quick “on-line” access to information or a
printed report.

• Batch data-entry operations resulting in an intermediate or transaction file which is not
the final end product of the application. The transaction file is later used as input in
batch mode to a program which creates or updates the final end product (usually a da-
tabase).

• Interactive data-entry operations in which the database is updated immediately, making
the updated information available to other users as soon as the transaction is complete.
If this technique is chosen, the parallel maintenance of a transaction file, as in batch data
entry, should be strongly considered to allow backup and recovery from errors.

Generally, an application program offering interactive data entry transactions
must ensure that multiple users and their associated tasks are protected from one
another. In the worst case, the designer may have to prevent any other access to

352

Asynchronous Devices
Programming with TIO

the database while an update transaction is in progress. This includes data
retrieval access in read-only mode since reporting of partially updated data may
be unacceptable to the application.

State Machine Model

The State Machine Model is a conceptual framework for designing a TIO applica-
tion package. It is used to keep track of where you are in the program, and how
you got there. For example, in the array addressing mode example, the variable
Port is used to inform the system of which terminal supplied input and where the
input is to be stored.

In the executive mode example, the variable State is given a value when a routine
has completed processing. When input is received from a terminal, State is used to
determine the next task to perform. This method is called the Explicit State
Machine Approach because the variable is explicitly assigned a value.

Controlling Your Application

The definition and priorities of the softkeys on the terminal you use to control the
terminal(s) used in your application can have a strong influence on the perfor-
mance of the application.

Therefore you must be aware of the relative priorities of the softkeys and the oper-
ations in your application. With this knowledge you will avoid unexpected results
when running your application.

For example, if you decide that pressing a softkey on the terminal should never be
allowed to interrupt your application, you should set the priority of all of the soft-
keys to a value lower than the priorities specified in your application program.
This is done using the ON KEY # statement (refer to page 151 for the details of
this statement).

353

14

Integrating C Functions (DLL)

DLL (Dynamic Loadable Library) is a mechanism for extending the functionality
of Eloquence by calling your own functions, written in C. Using this functionality
you are able to integrate specialized solutions into Eloquence.

354

Integrating C Functions (DLL)

This chapter is divided into two parts. The first part describes how to use DLL
from inside Eloquence. The second part describes the technical realization and
how to generate your own DLL. The example described in this chapter, and two
more examples, are stored in the directory/opt/eloquence/share/example .

355

Integrating C Functions (DLL)
Using DLL in Eloquence

Using DLL in Eloquence

You can use a DLL in Eloquence like a subprogram. You load it using LOAD
DLL, call it with CALL DLL and terminate it with DEL DLL.

Example:

The following table illustrates the differences and similarities between a subpro-
gram and a DLL.

The DLL is started from within Eloquence as a separate process.

Subprogram: DLL:

LOAD SUB “SUBPG” LOAD DLL Subpg, 1024

CALL Numeric(A$,A) CALL DLL Subpg(”Numeric”,
A$,A)

DEL SUB Numeric TO
END

DEL DLL Subpg

 Subprogram DLL

Programming Language: Eloquence C

Procedures Yes Yes

Functions Yes No

COM variables Yes No

Module-specific variables No Yes

File arguments Yes No

Variable arguments No Yes

Call to Eloquence Yes No

Input/Output to screen Yes No

356

Integrating C Functions (DLL)
Using DLL in Eloquence

Communication between Eloquence and the DLL process is realized using shared
memory, which is a storage area that can be accessed simultaneously by several
processes.

LOAD DLL starts the DLL process and initializes the shared memory. The DLL
process now waits for a signal from Eloquence.

CALL DLL copies the arguments into shared memory and signals the DLL pro-
cess that the arguments have been passed. Now control is passed to the DLL.

After the DLL process has finished processing, control is passed back to Elo-
quence.

DEL DLL terminates the DLL process and releases the shared memory.

The LOAD DLL Statement

The LOAD DLL statement starts a DLL process and assigns it to the given name.

The syntax is as follows:

 LOAD DLL Name [,filename$], size

Name the name the DLL will be referenced with. Note that this name
must have an initial upper-case letter, in accordance with Elo-
quence syntax.

filename$ (optional). If present, specifies the file name of the DLL. If not
present the file/opt/eloquence/dll/ Name will be loaded.

size specifies the size of the shared memory. The size of the shared
memory depends on the number and size of the arguments.

 Examples:

 LOAD DLL Sample, 512
 LOAD DLL Test, “TEST,SYSTEM”, 1024

The first example starts the DLL/opt/eloquence/dll/Sample and creates a
shared memory of 512 Bytes.

The second example starts the DLLTest , which is located in the file TEST in the
directory specified by the volume nameSYSTEM and creates a shared memory of
1024 Bytes.

A maximum of five DLL processes can be loaded.

Possible Error Messages:

56 File name or directory undefined or inaccessible

357

Integrating C Functions (DLL)
Using DLL in Eloquence

600 Unable to load DLL

601 Improper DLL memory size

The DEL DLL Statement

The DEL DLL statement terminates the DLL process specified byName.

The syntax is as follows:

 DEL DLL Name

Name same name as used in the LOAD DLL statement. No runtime
error occurs if this DLL doesn’t exist.

Example:

 DEL DLL Sample

This terminates the DLL loaded with the nameSample .

The CALL DLL Statement

The CALL DLL statement starts the specified procedure of the DLL process.

The syntax is as follows:

 CALL DLL Name(Proc$ [,arguments])

Name same name as used in the LOAD DLL statement.

Proc$ name of the procedure

arguments list of arguments to be passed to the DLL process. The argu-
ments are passsed as if to a subprogramm. Files cannot be
passed. Maximum number of arguments is 20.

Examples:

 CALL DLL Sample(P$,A$)
 CALL DLL Test(”check”, 1,”TEST”,A$,A$(*),I,I(*))

The first example calls the procedure whose name is stored inP$ in the DLL
Sample using the argumentA$. The second example calls the procedurecheck
of the DLL Test with the arguments1, “TEST”, A$, A$(*), I,I(*).

Possible Error Messages:

602 DLL not loaded

603 DLL memory overflow

358

Integrating C Functions (DLL)
Using DLL in Eloquence

604 DLL process not found

605 DLL return area destroyed

606 Number of arguments exceeds maximum

Shared Memory

The shared memory is required to exchange data between Eloquence and the DLL
process.

The size of the area depends on the number and type of the arguments:

36 Bytes + 24 Bytes per argument.

Additional requirements per argument:

STRING 4 Bytes + String length rounded up to next 4 byte boundary

INTEGER 4 Bytes

DINTEGER 4 Bytes

SHORT 12 Bytes

REAL 12 Bytes

Arrays require the above memory capacity per element

359

Integrating C Functions (DLL)
Generating a DLL

Generating a DLL

This section presumes you have experience with Eloquence and C, and that you
have previously worked with HP-UX tools.

First write the C functions you want to call from your Eloquence application.

Then start the program/usr/eloquence/dllcc . This program analyzes the C
functions and determines the function names and arguments which have to be
used in the CALL DLL statement. This information is stored in a second C source
file.

Now compile all C source files using the ANSI-C option and link them with the
library libeloq.a . LOAD DLL starts the DLL process and initializes the shared
memory.

The DLL program is started as a separate process from within Eloquence to pre-
vent mutual interference.

The DLL process now waits for a signal from Eloquence. CALL DLL copies the
arguments into shared memory and signals the DLL process that the arguments
have been passed. Now control is passed to your C function. The DLL process
converts the passed arguments into the format specified in the C functions. If the
return value of the C function is non-zero, this value is used to force an Eloquence
error. If no error has occured the DLL function transfers the arguments passed as
“passed by reference” back to the shared memory segment and signals the Elo-
quence process that the DLL function has finished.

Eloquence

PROGRAM

shared
memory DLL

communication

DLL
interface

communication

functions

360

Integrating C Functions (DLL)
Generating a DLL

NOTE: ANSI-C functionality is not supported by the C-compiler provided as part of the standard
HP-UX operating sytem. It is supported by the C-compiler sold as an optional, separate
product. See the example in the directory/usr/eloquence/example of how to
compile a DLL without the optional ANSI-C compiler. The example DLL described in this
manual is generated using the ANSI-C compiler.

DLLCC

 dllcc [options] {- | files }

Options:

-help Gives usage

-l Output source listing

-o file Output file name, default isstdout

Specifying input file ’-’ will force reading fromstdin

Examples:

 dllcc -o sampleif.c sample1.c sample2.c
 cat test.c | dllcc - >testif.c

Each source file containing functions to interface with Eloquence must include the
file dllif.h .

Each user function you want to call from Eloquence must be of type EqDLL.

The function arguments must be of the following type:

EqVoid this function has no arguments

EqInt argument is of type Integer (long)

EqReal argument is of type Real (double)

EqChar argument is of type String, terminated by a NULL-character
(char *)

EqString argument is of type String (EqSring *)

… the function has a variable number of arguments

The DLLCC program supports the following syntax:

C comments (/*…*/) are recognized and ignored.

The C preprocessor statements

#if 0 ... #endif

361

Integrating C Functions (DLL)
Generating a DLL

can be used to deactivate whole segments, but they must not be nested.

The function syntax must follow the ANSI-C convention:

EqDLL functionname (EqVoid)
EqDLL functionname (Argument [, Argument])
EqDLL functionname (Argument [, Argument [,...]] , ...)

Argument types:

EqInt ArgumentName

This is an Integer argument which cannot be modified (”pass by value”). Valid
argument types are INTEGER, DINTEGER, SHORT, REAL

EqInt * ArgumentName

This is an Integer argument which can be modified or an Integer array (”pass by
reference”). Valid argument types are INTEGER, DINTEGER

EqInt ArgumentName size

This is an Integer array (”pass by reference”). If size is specified, this array must
at least have size elements. Valid argument types are INTEGER, DINTEGER.

EqReal ArgumentName

This is a Real argument which cannot be modified (”pass by value”). Valid argu-
ment types are INTEGER, DINTEGER, SHORT, REAL.

EqReal * ArgumentName

This is a Real argument which can be modified, or a Real array (”pass by refer-
ence”). Valid argument types are SHORT, REAL.

EqReal ArgumentName size

This is a Real array (”pass by reference”). If size is specified, this array must at
least have size elements. Valid argument types are SHORT, REAL

EqChar * ArgumentName

This is a pointer to a zero-terminated character array (”pass by value”). Valid
argument type is STRING.

EqString * ArgumentName

This is a String argument which can be modified or a String array (”pass by refer-
ence”). Valid argument type is STRING.

EqString ArgumentName size

This is a String array (”pass by reference”). If size is specified, this array must
have at least size elements. Valid argument type is STRING

...

362

Integrating C Functions (DLL)
Generating a DLL

This is a variable argument (”pass by reference”). Type depends on the Eloquence
data type passed. A maximum of 20 arguments can be passed.

Example

This example shows a C program with the definition of two functions that could
be called from an Eloquence application, and the output file generated by thedllcc
program, the makefile and the corresponding Eloquence program.

Example:

/* num.c */

#include "dllif.h"

EqDLL int_add(EqInt int1, EqInt int2, EqInt *result)
{
 *result = int1 + int2;
 return(0);
}

EqDLL int_div(EqInt int1, EqInt int2, EqInt *result)
{
 if(int2 == 0)
 return(31); /* division by zero */
 *result = int1 / int2;
 return(0);
}

The call

 dllcc -o num.if.c num.c

causes dllcc to generate the file num.if.c with the following content:

Example:

/*
 num.if.c
 THIS FILE IS GENERATED AUTOMATICALLY BY DLLCC
 DON'T CHANGE MANUALLY
*/

#include <dllif.h>

/*
 int_add(long int1, long int2, long *result)
 int_div(long int1, long int2, long *result)
*/

struct EqFuncList EqFuncList[] = {
 { "int_add", 0, 3 },
 { "int_div", 3, 3 },
 { 0L }

363

Integrating C Functions (DLL)
Generating a DLL

};

struct EqArgList EqArgList[] = {
 { "int1", EqArg_IntByValue , 0 },
 { "int2", EqArg_IntByValue , 0 },
 { "result", EqArg_IntByReference , 0 },
 { "int1", EqArg_IntByValue , 0 },
 { "int2", EqArg_IntByValue , 0 },
 { "result", EqArg_IntByReference , 0 },
};

int EqCall(fn, av)
int fn; void *av[];
{
 switch(fn) {
 case 0:
 return int_add(*(EqInt *)(av[0]), *(EqInt *)(av[1]), (EqInt
*)(av[2]));
 case 1:
 return int_div(*(EqInt *)(av[0]), *(EqInt *)(av[1]), (EqInt
*)(av[2]));
 default:
 return -1;
 }
}

This is the sample ‘makefile’ to build the above example.

364

Integrating C Functions (DLL)
Generating a DLL

Example:

compiler flags
CFLAGS = -Aa +OV

Num: num.o num.if.o
 $(CC) -o $@ $(CFLAGS) num.if.o num.o -leloq -lmalloc

num.if.o: num.c
 /usr/eloquence/dllcc -o num.if.c num.c
 $(CC) $(CFLAGS) -c -o $@ num.if.c
 rm -f num.if.c

The corresponding Eloquence application is NUM.PROG.

Example:

1000 ! RE-STORE "NUM,EXAMPLE"
1010 !
1020 INTEGER Res
1030 !
1040 ON ERROR GOSUB Error
1050 !
1060 LOAD DLL Num,"Num,EXAMPLE",1024
1070 !
1080 CALL DLL Num("int_add",1,1,Res)
1090 PRINT Res
1100 CALL DLL Num("int_div",5,2,Res)
1110 PRINT Res
1120 CALL DLL Num("int_div",1,0,Res)
1130 PRINT Res ! Value unchanged due to error
1140 !
1150 DEL DLL Num
1160 END
1170 !
1180 Error:!
1190 PRINT ERRM$
1200 PRINT ERRMSG$(ERRN)
1210 RETURN

Programming Guidelines

DLL interface level

All source files using DLL interface level functions must include the file
dllif.h . It defines the data types and the function prototypes.

#include dllif.h

DLL interface level functions

struct EqFuncInfo *EqFuncInfo(void)

This function returns information about the current function.

365

Integrating C Functions (DLL)
Generating a DLL

Type EqFuncInfo is defined in dllif.h.

 struct EqFuncInfo {
 char *name;
 int arg_cnt;
 };

name contains a pointer to the function name.

arg_cnt contains the number of arguments.

This data must not be modified.

 struct EqArgInfo *EqArgInfo(void *arg)

This function returns information about a function argument. If the argument is a
pointer, it can be used to find out further information on this argument. Alterna-
tively, the order (beginning at 0) can be passed.

If the argument is invalid, NULL is returned.

Type EqArgInfo is defined in dllif.h.

 struct EqArgInfo {
 enum EqArgType type;
 char *name;
 int elcnt;
 };

type specifies the argument type.

name contains a pointer to the name of the argument. For a variable argument this
is “…”.

elcnt contains the number of elements. Unless the argument is an array, this is 1.

This data must not be modified.

 int EqStrlen (EqString *s);

Returns current string length of Eloquence string

 int EqMaxStrlen(EqString *s);

Returns maximum string length of Eloquence string

 int EqStrcat(EqString *s1, EqString *s2);

Appends a copy of string s2 to the end of string s1. Returns zero on success or 18
on string overflow.

 int EqStrcpy(EqString *s1, EqString *s2);

Copies string s2 to string s1. Returns zero on success or 18 on string overflow.

366

Integrating C Functions (DLL)
Generating a DLL

 int EqStrcmp(EqString *s1, EqString *s2);

Compares its arguments and returns an integer less than, equal to, or greater than
zero, depending on whether string s1 is lexicographically less than, equal to, or
greater than string s2.

 EqString *EqSubstr(EqString *s, int start, int len);

Extracts substring of Eloquence string.

start is the position of the first character starting at 1

len is the number of characters to be extracted.

Returns new Eloquence string descriptor, or NULL pointer if arguments are
invalid.

NOTE: The return value points to a static area which will be overwritten on next
call. The string value is not moved; the descriptor will point into original string.

 int EqStr2str(EqString *eq, void *s);

Converts Eloquence string into zero terminated string. Returns string length with-
out trailing zero.

NOTE: Target string must provide enough space to hold string value and termi-
nating \0 character.

 int str2EqStr(void *s, EqString *eq);

Converts zero terminated string into Eloquence string. Returns zero on success, or
18 on string overflow.

 EqString *EqMkstr(int maxl);

Allocate new string using malloc(). Returns NULL on memory allocation failure.

NOTE: The return value points to a static area and will be overwritten on next
call.

Setup/cleanup hooks

The functions dll_setup() and dll_cleanup() are optional. If specified by the pro-
grammer, they are called when the DLL process starts, or before it terminates.

 void dll_setup(void)
 void dll_cleanup(void)

The DLL process can be terminated in dll_setup() or dll_cleanup() using exit().

367

Integrating C Functions (DLL)
Generating a DLL

To terminate the process while inside a function called by Eloquence, the process
should send itself a SIGTERM signal (e.g. raise(SIGTERM);). This is necessary
to clean up properly.

Signals

The following signals are used internally and MUST NOT be modified:

SIGINT ignored

SIGTERM is rerouted to the DLL termination handler

SIGUSR2 is rerouted to the DLL manager

The signal handling is internally realized using thesigvector functionality.

Environment

When a DLL is called, all files with the exception of stderr are closed.

Stderr is linked to the terminal but not integrated into the Eloquence screen buffer.

If you reroute stderr when starting Eloquence, for example for the purpose of
external tracing, all output onto stderr will also be rerouted into this file.

Debugging

If you set the global variable dll_debug, you can print out the call, the arguments
and return value of the function called into stderr.

DLL debug levels

0 = no debugging

1 = function call and return value

2 = function call, argument values, return value

3 = internal

xdb

To debug a DLL process with xdb, follow the procedure below:

Make sure that the file.xdbrc is present in your HOME directory, and that it
contains the following:

 z 17 rs

All modules of the DLL process must be compiled and linked using the debug
option (-g).

368

Integrating C Functions (DLL)
Generating a DLL

You will need 2 terminals or 2 windows. No further user can have loaded the
DLL.

Now start the Eloquence program on terminal 1. After the LOAD DLL statement
has been executed, you can look up the process number of the DLL process using
the ‘ps’ command.

Now start xdb on terminal 2 using the following options:

xdb -P { DLL process number } { DLL filename }

Insert a breakpoint in the routine(s) you want to test and continue the DLL process
with xdb ‘c’ command.

Now continue the Eloquence program execution on the first terminal. After the
CALL DLL statement you are in debug mode.

DLL communication level

NOTE: Do not use the DLL communication level unless absolutely necessary.
Using the DLL communication level is more trouble, more prone to errors and generally
not so flexible. Using the DLL communication level is not possible in conjunction with the
DLL interface level.

3 functions are available:

 int dll_main(void)

dll_main() is called in a CALL DLL. The return code is interpreted as an Elo-
quence runtime error number.

 void dll_init(void)
 void dll_exit(void)

These functions are called when the DLL process is started or terminated.

DLL communication level utilities

When using DLL communication level, there are 3 functions available:

 int u_get_argc(void)

Returns the number of Eloquence arguments.

 t_DLL_arg u_get_arg(int idx)

Returns the description of an Eloquence argument.

 u_unref_arg(int idx)

Flags an argument passed as “pass by reference” as not modified (for TRACE).

369

Integrating C Functions (DLL)
Generating a DLL

Example:

/*
 This is a sample DLL communication level routine
 It will force eloquence runtime error with the error
 number given as argument.
*/

#include <dll.h>

int dll_main(void)
{
 int argc;
 t_DLL_arg arg;

 /* get argument count */
 argc = u_get_argc();
 if(argc != 1)
 return(9);

 /* check for integer argument */
 arg = u_get_arg(0);
 if(arg.type != DLL_INTEGER)
 return(8);
 if(arg.elcnt != 1)
 return(8);

 /* return error number */
 return(*(int *)arg.ptr);
}

370

Integrating C Functions (DLL)
Error Messages

Error Messages

600 Unable to load DLL

5 DLL processes have already been started.

The DLL shared memory cannot be assigned.

The DLL process cannot be started.

601 Improper DLL memory size

602 DLL not loaded

603 DLL memory overflow

604 DLL process not found

There is an error in the “C” function, causing the program to abort,
or the DLL process has been killed.

605 DLL return area destroyed

Usually a pointer problem in C function.

606 Number of arguments exceeds maximum.

371

Statement Flow Analyser

15
Statement Flow Analyser

The SFA (Statement Flow Analyser) gives you the ability to analyse your applica-
tion. You can find out which parts of your application are executed and how often,
and how much time the execution took. So on the one hand you can check what
parts of your application were executed in a test, on the other hand you can
receive information about run time behaviour of your application.

The SFA consists of two programs: sfagen and sfarpt.

The sfagen program must be run first. It generates empty SFA files for all program
files you want to analyse. Then start eloq -sfa with the required options, and the
files will be filled.

The first analysis type is afile report. This lists what program was started, how
often it was executed and how much time it used. The analysis can be done using
wildcards, so that it is possible to analyse a specific application (e.g. Fibu).

To use an SFA analysis you must start Eloquence with the -sfa option and the
name of the program. An analysis is not possible in the development version.

Example:

 sfarpt -f AC*

All programs beginning with AC are to be analysed.

From all programs selected a histogram is created which shows what portion of
the elapsed time each program took.

The second analysis type is thesegment report. This lists which segments (parts of
program) were executed and how much elpased time was used.

Example:

 sfarpt -s AC* YSUBR.SFA

All programs beginning with AC, plus the program named YSUBR are to be anal-
ysed.

372

Statement Flow Analyser

The third type is aline report. This analysesone program a line at a time. It shows
how often this line was executed and how much time was used for it. The program
distinguishes between individual segments. A segment can be a program, a SUB
or an FN. Here too a histogram is created showing which program line in the seg-
ment used the most time.

Example:

 sfarpt -l 0.5 YSUBR.SFA

YSUBR is to be analysed. Lines whose portion of the elapsed time is less than
0.5% are to be ignored.

Example:

 sfarpt -g 0 YSUBR.SFA

List all lines which were not executed.

373

Statement Flow Analyser

sfagen

Thesfagen program generates a SFA file out of a program file. In the SFA file is
stored all information about how often each line was executed and how much
elpsed time was used in the execution. This SFA file can be optionally updated
every time the program starts.

Syntax

 sfagen [-v]name prog

Example

 sfagen AC* YSUBR

A file with extension .SFA is created. If an SFA file already exists, it will be over-
written. This way SFA files which are already full of data can be set to zero. This
would be required to obtain a new reading after a program modification.

NOTE: Every time a program is modified a new SFA file must be created, otherwise the program
is excluded from the analysis. This is achieved by a comparison of the date of the last
modification of .PROG file and .SFA file.

NOTE: The SFA files arenot ASCII files.

NOTE: Waiting time isnot included when using INPUT, WAIT, LINPUT etc. With FN and SUB
calls the call line contains the accumulated elapsed time.

374

Statement Flow Analyser

sfarpt

The sfarpt program analyses SFA files and produces the results on stdout.

Syntax

The default is aline report.

Options
-f A file report is to be created. All other options to be ignored.

-s A segment report is to be created.

-l percent All lines with elapsed timeless thanpercent are to be ignored
(default = 0%).

-g percent All lines with elapsed timegreater thanpercent are to be
ignored (default = 100%)

-b line The analysis is to begin atline number (line report only).

-e line The analysis is to end atline number. (line report only).

-n No page header to be printed.

Example listing sfarpt DBMAP1.SFA

GENERIC SFARPT (C) COPYRIGHT MARXMEIER SOFTWARE AG 2002 (A.03.00)

--

 STATEMENT FLOW ANALYZER - LINE REPORT

sfarpt

-help

-f

-s

-l percent

-g percent

-b line

-e line

-n

file

375

Statement Flow Analyser

 File name : DBMAP1

 Ignored less than : 2.00 % execution time

 Ignored greater than : 100.00 % execution time

 Beginning line number : 0

 End line number : 32767

 Total execution time : 1.54 Seconds

 Number of lines : 48

 Executed lines : 79.17 %

--

--

Segment : #1, main

Times loaded : 1

Eecution time : 1.64 sec (106.49%)

Number lines : 48

Executed lines : 38

LINE EXECUTION

NO HISTOGRAM SECONDS % RATE COUNT AVG

----- ------------------------------ --------- ------ ------ ------
-

 1110 ************************** 0.57 37.01 1 0.57

 1230 *********** 0.25 16.23 26 0.00

 1260 * 0.04 2.60 25 0.00

 1280 ******************************0.64 41.56 25 0.02

 1380 * 0.04 2.60 1 0.04

Example listing sfarpt -l2.0 DBMAP1.SFA

GENERIC SFARPT (C) COPYRIGHT MARXMEIER SOFTWARE AG 2002 (A.03.00)

--

376

Statement Flow Analyser

 STATEMENT FLOW ANALYZER - LINE REPORT

 File name : DBMAP1

 Ignored less than : 0.00 % execution time

 Ignored greater than : 100.00 % execution time

 Beginning line number : 0

 End line number : 32767

 Total execution time : 1.64 Seconds

 Number of lines : 48

 Executed lines : 79.17 %

--

--

Segment : #1, main

Times loaded : 1

Eecution time : 1.64 sec (100.00%)

Number lines : 48

Executed lines : 38

LINE EXECUTION

NO HISTOGRAM SECONDS % RATE COUNT AVG

----- ------------------------------ --------- ------ ------ --

 1000 0.00 0.00 1 0.00

 1010 0.00 0.00 1 0.00

 1020 0.00 0.00 1 0.00

 1030 0.00 0.00 1 0.00

 1040 0.00 0.00 1 0.00

 1045 0.00 0.00 1 0.00

 1050 0.00 0.00 1 0.00

 1060 0.00 0.00 1 0.00

 1070 0.00 0.00 1 0.00

377

Statement Flow Analyser

 1080 0.01 0.61 1 0.01

 1090 0.00 0.00 1 0.00

 1100 0.00 0.00 1 0.00

 1110 ************************** 0.57 37.76 1 0.57

 1120 0.00 0.00 1 0.00

 1130 0.00 0.00 1 0.00

 1140 0.00 0.00 1 0.00

 1150 0.00 0.00 1 0.00

 1160 0.00 0.00 1 0.00

 1170 0.00 0.00 1 0.00

 1171 0.01 0.61 1 0.01

 1180 0.01 0.61 1 0.01

 1190 0.02 1.22 1 0.02

 1200 0.00 0.00 1 0.00

 1210 0.00 0.00 1 0.00

 1220 0.00 0.00 1 0.00

 1230 *********** 0.25 16.23 26 0.00

 1240 0.02 1.22 26 0.00

 1250 0.01 0.61 25 0.00

 1260 * 0.04 2.44 25 0.00

 1270 0.00 0.00 25 0.00

 1280 ****************************** 0.64 39.02 25 0.02

 1290 0.00 0.00 25 0.00

 1300 0.00 0.00 25 0.00

 1310 0.00 0.00 25 0.00

 1320 0.00 0.00 25 0.00

 1330 0.02 1.22 25 0.00

 1340 0.00 0.00 25 0.00

 1350 0.00 0.00 0 0.00

 1360 0.00 0.00 0 0.00

 1370 0.00 0.00 0 0.00

 1380 * 0.04 2.44 1 0.04

 1390 0.00 0.00 0 0.00

 1400 0.00 0.00 0 0.00

 1410 0.00 0.00 0 0.00

 1420 0.00 0.00 0 0.00

 1430 0.00 0.00 0 0.00

378

Statement Flow Analyser

 1440 0.00 0.00 0 0.00

 1450 0.00 0.00 0 0.00

Example listing sfarpt -b1070 -e1230 DBMAP1.SFA

GENERIC SFARPT (C) COPYRIGHT MARXMEIER SOFTWARE AG 2002 (A.03.00)

--

 STATEMENT FLOW ANALYZER - LINE REPORT

 File name : DBMAP1

 Ignored less than : 0.00 % execution time

 Ignored greater than : 100.00 % execution time

 Beginning line number: 1070

 End line number : 1230

 Total execution time : 0.87 Seconds

 Number of lines : 48

 Executed lines : 79.17 %

--

--

Segment : #1, main

Times loaded : 1

Execution time : 1.64 sec (188.51%)

Number lines : 48

Executed lines : 38

LINE EXECUTION

NO HISTOGRAM SECONDS % RATE COUNT AVG

----- ----------------------------- --------- ------ ------ -------

 1070 0.00 0.00 1 0.00

 1080 0.01 1.15 1 0.01

379

Statement Flow Analyser

 1090 0.00 0.00 1 0.00

 1100 0.00 0.00 1 0.00

 1110 ****************************** 0.57 65.52 1 0.57

 1120 0.00 0.00 1 0.00

 1130 0.00 0.00 1 0.00

 1140 0.00 0.00 1 0.00

 1150 0.00 0.00 1 0.00

 1160 0.00 0.00 1 0.00

 1170 0.00 0.00 1 0.00

 1171 0.01 1.15 1 0.01

 1180 0.01 1.15 1 0.01

 1190 * 0.02 2.30 1 0.02

 1200 0.00 0.00 1 0.00

 1210 0.00 0.00 1 0.00

 1220 0.00 0.00 1 0.00

 1230 ************* 0.23 28.74 26 0.00

Example listing sfarpt -f DBMAP*

GERERIC SFARPT (C) COPYRIGHT MARXMEIER SOFTWARE AG 2002 (A.03.00)

--

 STATEMENT FLOW ANALYZER - FILE REPORT

 Ignored less than : 0.00 % execution time

 Ignored greater than : 100.00 % execution time

 Number of files : 5

 Total execution time : 11.09 Seconds

 Number of lines : 375

 Executed lines : 66.13 %

--

FILE EXECUTION LINES

NAME HISTOGRAM SECONDS % RATE EXEC % RATE

-------- ---------------------------- --------- ------ ----- ------

380

Statement Flow Analyser

DBMAP1 ******** 1.64 14.79 38 79.17

DBMAP2 *************** 2.88 25.97 61 84.72

DBMAP3 ****************************** 5.58 50.32 71 70.30

DBMAP4 ** 0.52 4.69 43 59.72

DBMAP5 ** 0.47 4.24 35 42.68

Example listing sfarpt -s DBMAP*

GENERIC SFARPT (C) COPYRIGHT MARXMEIER SOFTWARE AG 2002 (A.03.00)

 STATEMENT FLOW ANALYZER - FILE REPORT

 Ignored less than : 0.00 % execution time

 Ignored greater than : 100.00 % execution time

 Number of files : 5

 Number of segments : 5

 Total execution time : 11.09 Seconds

 Number of lines : 375

 Executed lines : 66.13 %

--

FILE/SEGMENT EXECUTION LINES

NAME HISTOGRAM SECONDS % RATE EXEC % RATE

---------------- ---------------- ------- ----- ---- -----

DBMAP1

main ***** 1.64 14.79 38 79.17

DBMAP2

main ********** 2.88 25.97 61 84.72

DBMAP3

main ******************** 5.58 50.32 71 70.30

381

Statement Flow Analyser

DBMAP4

main * 0.52 4.69 43 59.72

DBMAP5

main * 0.47 4.24 35 42.68

382

Statement Flow Analyser

383

Reference Tables

A
Reference Tables

384

Reference Tables
System Reset Conditions

System Reset Conditions

1 Setting or value at power-up or after pressing SCRATCH ALL.

2 The device address for the display is 8.

3 Resets all variables except those declared in COM.

4 Halts program only if executed while in a subprogram.

5 Also caused by LOAD and GET.

Table 23 (R indicates resetting to default conditions)

Default
Setting1

SCRATCH
 A P C V

SCRATCH RUN END
STOP

HALT CONT

Variables none R R R 3 R R - - -

Eloquence Programs none R R - - R - - - -

Program Execution halted R R 4 4 R - R R -

Standard Printer display2 R - - - - - - - -

System Printer display2 R - - - - - - - -

Printall Printer display 2 R - - - - - - - -

Subroutine Return Pointers none R R - - R R - - -

Angular Units RAD R R - - R R - - -

Numeric Output Format Standard R R - - R R - - -

Files Table files closed R 5 R 5 5 5 5 - -

DATA Pointers none R R - - R R - - -

ERRL, ERRN 0,0 R R R R R R - - -

ON Declaratives none R R R R R R R - -

TRACE Operations none R R R R R - - - -

Device REQUESTs none R R R R R - R - -

385

Reference Tables
TYP Function Return Values

TYP Function Return Values

Table 24

Value Meaning

0 Unrecognized type.

1 Real-precision number.

2 Total string.

3 End-of-file (EOF) mark.

4 End-of-record (EOR) mark.

5 Integer-precision number.

6 Short-precision number.

7 Double integer precision number.

8 First part of a string.

9 Intermediate part of a string.

10 Last part of a string.

11 HP-UX text file.

386

Reference Tables
ASSIGN Statement Return Variable

ASSIGN Statement Return Variable

Table 25

Return Variable Meaning

0 File available, assignment complete.

1 File not found (same as error 56).

4 Access error (error 91 or 93).

5 Other error.

387

Reference Tables
File Types

File Types

Table 26

Type Description

PROG Program file, machine-coded.

DATA Data file, ASCII-coded with or without header.

FORM Eloquence FORMS file.

388

Reference Tables
IMAGE Formatting Symbols

IMAGE Formatting Symbols

Table 27

Image
Symbol

 Symbol
Replication

 Purpose Comments

X Yes Blank Can go anywhere

" " Text Can go anywhere

D Yes Digit Fill = blanks

Z Yes Digit Fill = zeros

* Yes Digit Fill = asterisks

S Sign "+" or "-"

M Sign "·" or "-"

. Radix Output "."

C Comma Conditional number separator

R Radix Output ","

P Decimal point Conditional number separator

A Yes Characters Strings

() Yes Replicate For specifiers, not symbols

Carriage control Suppress CRLF

+ Carriage control Suppress LF

- Carriage control Suppress CR

K Compact Strings or numerics

, Delimiter

/ Yes Delimiter Output CRLF

@ Delimiter Output FF

389

Reference Tables
Storage Requirements

Storage Requirements

1 Rounded up, if needed, to a 4 byte boundary.

2 Plus 8 bytes per dimension.

Table 28

Variable Type Space Needed for
Read/Write Memory

Space Needed for
DATA files

Simple:

Real 16 bytes 8 bytes

Short 16 bytes 4 bytes

Integer 8 bytes 4 bytes

Double integer 8 bytes 6 bytes

String 12 bytes + 1 byte per char.1 4 bytes +1 byte per char +

4 bytes per defined record.1

Array:

Real 8 bytes + 8 bytes/element2 8 bytes x no. of elements

Short 8 bytes + 8 bytes/element2 4 bytes x no. of elements

Integer 8 bytes + 4 bytes/element2 4 bytes x no. of elements

Double integer 8 bytes + 4 bytes/element2 6 bytes x no. of elements

String 12 bytes + 4 bytes/element2

+ 1 byte per char.1

4 bytes per element + total
needed for each string

(see above)1

390

Reference Tables
Display Enhancement Codes/Character Set Switching Codes

Display Enhancement Codes/Character Set Switching
Codes

Table 29

Decimal
Code

Hexadecimal
Code

 Function

128 80 Change to No Video Enhancements.

129 81 Change to Inverse Video.

130 82 Change to Blinking.

131 83 Change to Blinking and Inverse Video.

132 84 Change to Underline.

133 85 Change to Underline and Inverse Video.

134 86 Change to Underline and Blinking.

135 87 Change to Underline, Blinking, and Inverse Video.

136 88 Change to Half Bright.

137 89 Change to Half Bright and Inverse Video.

138 8A Change to Half Bright and Blinking.

139 8B Change to Half Bright, Blinking, and Inverse Video.

140 8C Change to Half Bright and Underline.

141 8D Change to Half Bright, Underline, and Inverse Video.

142 8E Change to Half Bright, Underline, and Blinking.

143 8F Change to Half Bright, Underline, Blinking, and
Inverse Video.

146 92 Sys. Control

147 93 Line Drawing

148 94 Roman 8

391

Reference Tables
ASCII Character Codes

ASCII Character Codes

Table 30

Graphic Binary
Equivalent

 Decimal
Character
Equivalent

 Description

00000000 0 NULL (null)

00000001 1 SOH (start of heading)

00000010 2 STX (start of text)

00000011 3 ETX (end of text)

00000100 4 EOT (end of transmission)

00000101 5 ENQ (enquiry)

00000110 6 ACK (acknowledge)

00000111 7 BEL (bell)

00001000 8 BS (backspace)

00001001 9 HT (horizontal tabulation)

00001010 10 LF (line feed)

00001011 11 VT (vertical tabulation)

00001100 12 FF (form feed)

00001101 13 CR (carriage return)

00001110 14 SO (shift out)

00001111 15 SI (shift in)

00010000 16 DLE (data link escape)

00010001 17 DC1 (device control 1 or X-ON)

00010010 18 DC2 (device control 2)

392

Reference Tables
ASCII Character Codes

00010011 19 DC3 (device control 3 or X-OFF)

00010100 20 DC4 (device control 4)

00010101 21 NAK (negative acknowledge)

00010110 22 SYN (synchronous idle)

00010111 23 ETB (end of transmission block)

00011000 24 CAN (cancel)

00011001 25 EM (end of medium)

00011010 26 SUB (substitute)

00011011 27 ESC (escape)

00011100 28 FS (file separator)

00011101 29 GS (group separator)

00011110 30 RS (record separator)

00011111 31 US (unit separator)

00100000 32 Space

! 00100001 33 Exclamation point

00100010 34 Quotation mark

00100011 35 Number sign (hash mark)

$ 00100100 36 Dollar sign

% 00100101 37 Percent sign

& 00100110 38 Ampersand

’ 00100111 39 Apostrophe (closing single quote)

(00101000 40 Opening parenthesis

Table 30

Graphic Binary
Equivalent

 Decimal
Character
Equivalent

 Description

393

Reference Tables
ASCII Character Codes

) 00101001 41 Closing parenthesis

* 00101010 42 Asterisk

+ 00101011 43 Plus

, 00101100 44 Comma

- 00101101 45 Hyphen (minus)

. 00101110 46 Period (point)

/ 00101111 47 Slant (solidus)

0 00110000 48 Zero

1 00110001 49 One

2 00110010 50 Two

3 00110011 51 Three

4 00110100 52 Four

5 00110101 53 Five

6 00110110 54 Six

7 00110111 55 Seven

8 00111000 56 Eight

9 00111001 57 Nine

: 00111010 58 Colon

; 00111011 59 Semicolon

< 00111100 60 Less than sign

= 00111101 61 Equal sign

> 00111110 62 Greater than sign

Table 30

Graphic Binary
Equivalent

 Decimal
Character
Equivalent

 Description

394

Reference Tables
ASCII Character Codes

? 00111111 63 Question mark

@ 01000000 64 Commercial at

A 01000001 65 Uppercase A

B 01000010 66 Uppercase B

C 01000011 67 Uppercase C

D 01000100 68 Uppercase D

E 01000101 69 Uppercase E

F 01000110 70 Uppercase F

G 01000111 71 Uppercase G

H 01001000 72 Uppercase H

I 01001001 73 Uppercase I

J 01001010 74 Uppercase J

K 01001011 75 Uppercase K

L 01001100 76 Uppercase L

M 01001101 77 Uppercase M

N 01001110 78 Uppercase N

O 01001111 79 Uppercase O

P 01010000 80 Uppercase P

Q 01010001 81 Uppercase Q

R 01010010 82 Uppercase R

S 01010011 83 Uppercase S

T 01010100 84 Uppercase T

Table 30

Graphic Binary
Equivalent

 Decimal
Character
Equivalent

 Description

395

Reference Tables
ASCII Character Codes

U 01010101 85 Uppercase U

V 01010110 86 Uppercase V

W 01010111 87 Uppercase W

X 01011000 88 Uppercase X

Y 01011001 89 Uppercase Y

Z 01011010 90 Uppercase Z

[01011011 91 Opening square bracket

\ 01011100 92 Reverse slant

] 01011101 93 Closing square bracket

^ 01011110 94 Caret (circumflex)

_ 01011111 95 Underscore (low line)

‘ 01100000 96 Opening single quote

a 01100001 97 Lowercase a

b 01100010 98 Lowercase b

c 01100011 99 Lowercase c

d 01100100 100 Lowercase d

e 01100101 101 Lowercase e

f 01100110 102 Lowercase f

g 01100111 103 Lowercase g

h 01101000 104 Lowercase h

i 01101001 105 Lowercase i

Table 30

Graphic Binary
Equivalent

 Decimal
Character
Equivalent

 Description

396

Reference Tables
ASCII Character Codes

j 01101010 106 Lowercase j

k 01101011 107 Lowercase k

l 01101100 108 Lowercase l

m 01101101 109 Lowercase m

n 01101110 110 Lowercase n

o 01101111 111 Lowercase o

p 01110000 112 Lowercase p

q 01110001 113 Lowercase q

r 01110010 114 Lowercase r

s 01110011 115 Lowercase s

t 01110100 116 Lowercase t

u 01110101 117 Lowercase u

v 01110110 118 Lowercase v

w 01110111 119 Lowercase w

x 01111000 120 Lowercase x

y 01111001 121 Lowercase y

z 01111010 122 Lowercase z

{ 01111011 123 Opening brace (curly bracket)

| 01111100 124 Vertical line

} 01111101 125 Closing brace (curly bracket)

~ 01111110 126 Tilde

01111111 127 Delete (rubout)

Table 30

Graphic Binary
Equivalent

 Decimal
Character
Equivalent

 Description

397

Eloquence Syntax

B
Eloquence Syntax

398

Eloquence Syntax
Introduction

Introduction

The Eloquence language consists of statements, functions, operators and com-
mands. Operators and functions are used with variables and numbers in creating
numeric and string expressions. Expressions can be included in statements and
executed from the keyboard. Each statement can also be preceded by a line num-
ber and stored as a program line. Commands can only be executed from the key-
board; they are not programmable.

This appendix alphabetically lists the majority of statements, functions, and com-
mands available with the Eloquence language. Refer to the appropriate system
software manual for the syntax of additional Eloquence language enhancements.
For example, for database commands, refer to theEloquence DBMS manual.

Obsolete keywords and options which are only handled for HP260 compatibility
are no longer included here (they still work as before though).

399

Eloquence Syntax
Syntax List

Syntax List

A

B

C

ABS numeric expression()

ACCEPTstring variable

ACS numeric expression()

ASN numeric expression()

ASSIGN
file specTO# file number

file numberTO file spec

,return variable ;class list[][]

ASSIGN
* TO# file number

file numberTO *

ATN numeric expression()

ATTACH

ATTACH# taskid ,result[]

AUTO beginning line number ,increment value[][]

BACKGROUND

BEEP

BINEOR (numeric expression, numeric expression)

BINIOR (numeric expression, numeric expression)

BINAND (numeric expression, numeric expression)

BINCMP (numeric expression)

BIT (numeric expression, numeric expression)

CALL subprogram name (pass parameter list)[]

400

Eloquence Syntax
Syntax List

CASE
<

>

 constant

” string”

, ...[]

CASE
constant

” string”

TO
constant

” string”

, ...[]

CASE ELSE

CATALOG

CAT

” catalog spec[] ,volume spec”[] ,file type[]

CATOPEN filename

CATCLOSE

CATGETMSG$ msg_set[] msg_num;string_var$

CHR$ numeric expression()

CLOCK

COL operand array()

COM item ,item ...[]

COMMAND string expression ,return variable[]

CONTINUE

CONT

line id[]

COPY source file spec TO destination file spec[]

COS numeric expression()

CREATE file spec,number of defined records,record length[]

CRTCOLS

CRTCOLS=columns

CRTLINES

CURKEY

401

Eloquence Syntax
Syntax List

Cursor Items

D

Set Cursor position

Set Curssor Position

Dislay enhancements

Reset

Set Inverse Video

Set Blinking

Set Underline

Set Half bright display

Fields

Protect number of lines

Unprotect number of lines

Unprotect all lines

Specify Input Field

Reset Input Field

Specify Output Field

Reset Output Field

CURSORitem. ,item ...[]

Xposition[] ,Yposition()[]()

RE columns()

IV columns()

BL columns()

UL columns()

HB columns()

PL lines()

UPL lines()

UPALL

IF columns()

RIF columns()

OF columns()

ROF columns()

DATA constant or text ,constant or text ...[]

DATE$ format[]

DEFAULT
ON

OFF

402

Eloquence Syntax
Syntax List

E

DEF FN
function name

function name $

(formal parameter list)[] = expression

DEF FN
function name

function name $

(formal parameter list)[]

DEG

DEL first line id ,second line id[]

DEL SUB subprogram name TO END[]

DEL FN function name $[] TO END[]

DETACH

DIM item ,item ...[]
DINTEGER Variable (dim)[]

DISABLE

DISP display list[]

DISP USING
image format string

line id

;print using list[]

DROUND (numeric expression,number of significant digits)

DVP

EDIT ” prompt”
,

;

string variable

ELSE

ENABLE

END

END IF

403

Eloquence Syntax
Syntax List

F

G

END LOOP

END SELECT

END WHILE

ENTER variable name 1 ,variable name 2 ...[]

ERRL

ERRM$

ERRMSG$ message number()

ERRN

EXIT IF conditional expression

EXP numeric expression()

FETCH line id[]

FIXED number of digits

FLOAT number of digits

FNEND

FOR loop counter= initial value TO final value STEPincrement[]

FORCE ERRORnumeric expression

FRACT numeric expression()

GET file spec ,first line id ,execution line id[][]

GETENV$ string expression

GOSUB line id

GOSUBnumeric expressionOF line id list

GOTO line id

GOTO numeric expressionOF line id list

GRAD

404

Eloquence Syntax
Syntax List

H

I

Format Elements:

D specifies a digit position. The fill character is a blank.

nD specifies n digit positions

Z specifies a digit position. The fill character is a zero.

nZ specifies n digit positions.

* specifies a digit position. The fill character is an asterisk.

n* specifies n digit positions

X causes a blank to be printed.

nX causes n blanks to be printed.

A specifies a single string character position.

nA specifies n string characters

. indicates placement of a decimal point radix indicator. There
may be only one radix indicator per numeric specifier.

R indicates placement of a comma radix indicator. There may
only be one radix indicator per numeric specifier.

C indicates placement of a comma in a numeric specification. It
is a conditional character and is output only if there is a digit
to its left.

P indicates placement of a period in a numeric specification. It is
a conditional character and is output only if there is a digit to
its left.

S indicates a sign position for a + or -. The sign floats to the left
of the leftmost significant digit if S appears before all digit
symbols.

HOP line id[]

IF numeric expressionTHEN
line id

executable statement

IMAGE format , format ...[]

405

Eloquence Syntax
Syntax List

L

M indicates a sign position. + is replaced by a blank. The sign
floats to the left of the leftmost significant digit if M appears
before all digit symbols.

K specifies an entire string or numeric field. A numeric is output
in standard format, except that no leading or trailing blanks
are output. The current value of a string is output.

INDENT starting column,increment

INPUT ” prompt”
;

,

variable name ,...[]

INT numeric expression()

LASTLINE

LDISP display list[]

LDSPEC$

LENTER string variable

LEN string expression()

LEX string expression, string expression()

LGT numeric expression()

LIN number of line feeds()

LINK file spec ,first line id ,execution line id[][]

LINPUT ” prompt”
,

;

string variable

LOAD file spec ,execution line id[]

LOAD SUB file spec ,line number ,increment[][]
;starting segment ,last segment[][]

406

Eloquence Syntax
Syntax List

M

LOCK# file number ,wait variable[]

LOG numeric expression()

LOOP

LWC$ string expression()

MAPVOL$ (volume id)

MAPPNTR$ (printer)

MASS STORAGE ISvolume spec

MAT array variable= CON (redim subscripts)[]

MAT result array= operand array

MAT result vector= CSUM operand matrix

MAT result array= function operand array

MAT array variable= (numeric expression)

MAT INPUT array variable (redim subscripts)[] , ...[]

MAT result array= operand array operator operand array

MAT PRINT # file number ,record number[] ;array ,...[] ,END[]

MAT READ array (redim subscripts)[] , ...[]

MAT READ # file number ,record number[] ;

array (redim subscripts)[] , ...[]

MAT result vector= RSUM operand matrix

MAT result array= operand array operator operand array

MAT result array= (scalar) operator operand array

MAT array variable= ZER (redim subscripts)[]

MAX (list)

MERGE file spec ,line id ,line id[][]

MIN (list)

407

Eloquence Syntax
Syntax List

N

O

MMSPEC$

MSI volume spec

NEXT loop counter

NORMAL

NUM string expression

NUMERIC

NO OPERATOR

OFF END#file number

OFF ERROR

OFF HALT

OFF KEY# key number list[]

OFF KEYBD# key number list[]

OFF SIGNAL

OFF INPUT#port number

OFF DELAY

ON DELAY

ON END # file number

GOTO line id

GOSUB line id

CALL subprogram name

ON ERROR

GOTO line id

GOSUB line id

CALL subprogram name

ON numeric expressionGOSUB line id list

ON numeric expressionGOTO line id list

408

Eloquence Syntax
Syntax List

P

ON HALT

GOTO line id

GOSUB line id

CALL subprogram name

ON INPUT# port number branching statements[]

ON KEY #key number , ...[] :label[]
GOTO line id

GOSUB line id

CALL subprogram name

ON KEYBD #key number , ...[]
GOTO line id

GOSUB line id

CALL subprogram name

ON SIGNAL

GOTO line id

GOSUB line id

CALL subprogram name

OPTION BASE
0

1

PAGE

PAUSE

PI

PID

PNTR

POS (string expression 1,string expression 2)

PPID

POPUP BOX xpos,ypos,[] Image_def ,Return[]

PRINT #file ,record[] ,word[] ; reexp ssion[] , ...[][] END[][]

PRINT print list[]

409

Eloquence Syntax
Syntax List

Q

R

PRINT USING
line id

image format string

;print-using list[]

PRINT ALL IS
printer number

file spec

,WIDTH line width[] ,TRANSPARENT[]

PRINTER IS
printer number

file spec

,WIDTH line width[] ,TRANSPARENT[]

PROUND (numeric expression, power-of-ten-position)

PRINTER SYNC

PURGEfile spec

QUIT

QQUIT

RAD

RANDOMIZE start value[]

READ variable name 1 , ...[]

READ #file ,record[] ,word[] ; variable[] , ...[][]

READ LABEL string variable ONvolume spec[] string array name{ }

REAL Variable (dim)[]

REC file number()

REDIM array variable (subscripts) , ...[]

REFRESH ON

OFF

410

Eloquence Syntax
Syntax List

S

RELEASEprinter/port number

RELEASE#taskid

REM any combination of characters

REN beginning line number ,increment value[][]

RENAME old file specTO new file name

REPEAT

REQUESTdevice address ,return variable[]

REQUEST#taskid ,result[]

RE-SAVE

RESAVE

file spec ,beginning line id ,ending line id[][]

RE-STOREfile spec

RESTORE line id[]

RETURN
numeric expression

string expression

REVISION

REVISION$

RND

ROTATE (numeric expression, numeric expression)

ROW operand array()

RPT$ (string expression,number of repetitions)

RUN
line id

file spec ,line id[]

SCAN (string expression 1,string expression 2)

411

Eloquence Syntax
Syntax List

SCRATCH

'A

'C

'P

'V
SD

SELECTconditional expression

SEND SIGNAL# taskid

SFA ON

OFF

SGN numeric expression()

SHIFT (numeric expression, numeric expression)

SHOWTASK

SI

SIN (numeric expression)

SIZE file number()

SLEEP number of milliseconds[]

SLEN file number()

SOFTKEYSET

ON

OFF

numeric expression

SPA number of spaces()

SPACE DEPENDENT

SPACE INDEPENDENT

SQR numeric expression()

STANDARD

STOP

STORE”file name”

412

Eloquence Syntax
Syntax List

T

SUB subprogram name (formal parameter list)[]

SUBEND

SUBEXIT

SUM operand array()

SYSID$

SYSTEM PRINTER IS
printer number

file spec

,WIDTH line width[] ,TRANSPARENT[]

TAB character position()

TAN numeric expression()

TASKID

TIME$ format[]

TRACE beginning line id ,ending line id[][]

TRACE ALL

TRACE PAUSEline id ,numeric expression[]

TRACE VARIABLES variable list

TRACE WAIT number of milliseconds

TRIM$ string expression()

TSTAT

TYP file number()

TYPEAHEAD

TYPEAHEAD mode

TYPEAHEAD CLEAR

413

Eloquence Syntax
Syntax List

U

V

W

X

Y

UNLOCK# file number

UNTIL conditional expression

UPC$ string expression()

USRID

VAL string expression()

VAL$ numeric expression()

WAIT number of milliseconds[]

WHILE conditional expression

WRD (file number)

XASSIGN# file numberTOfile name;file type ,assign_options ...[]

XOWNID taskid

XLENTER String_var$

XPOS

XPURGE filename ;type[]

XTRACE trace level[]

YPOS

414

Eloquence Syntax
Syntax List

415

Error Messages

C
Error Messages

Operator errors often result from incorrect procedures, inappropriate commands,
or commands with incorrect parameters. Software errors are caused by an error in
a program being executed. These may be logical errors or inappropriate com-
mands or commands with incorrect parameters. Hardware errors result from hard-
ware failures, absence, or malfunction. The Eloquence error message numbers
and an appropriate description of each are listed below.

1 Unsupported statement.

2 Memory or program segment overflow.

3 Line not found in current program segment.

4 Improper RETURN.

5 Abnormal program termination.

6 Improperly matched FOR/NEXT.

7 Undefined function or subprogram.

8 Improper parameter matching.

9 Improper number of parameters.

10 String value required.

11 Numeric value required.

12 Attempt to re-declare a variable or label.

13 Array dimensions not specified.

14 Incorrect OPTION BASE statement.

15 Invalid bounds on array dimensions or bad string length.

16 Dimensions are improper or inconsistent.

17 Subscript out of range.

18 Subscript out of range or substring too long.

19 Improper value.

416

Error Messages

20 Integer-precision overflow.

21 Short-precision overflow.

22 Real-precision overflow.

23 Intermediate-precision overflow.

24 (TAN(N*PI/2), when N is odd.

25 Argument of ASN or ACS is >1 in absolute value.

26 0 to a negative power.

27 Negative number to non-integral power.

28 Argument of LOG or LGT is negative.

29 Argument of LOG or LGT is 0.

30 Argument of SQR is negative.

31 Division by 0, or modulo 0.

32 String does not represent a valid number, or bad input.

33 Argument of NUM, CHR$, or RPT$ is improper.

34 Reference line is not an IMAGE statement.

35 Improper image.

36 Out of data.

37 Edit string too long.

38 Syntax error in ENTER or attempt to input from protected line.

39 Function program not allowed.

40 Improper replace or delete of line.

41 First line number > second line number.

42 Attempt to replace or delete a busy line.

45 Nested keyboard-entry statements.

46 Nothing to (RE-)STORE or (RE-)SAVE.

47 Subprogram COM declaration inconsistent with main program.

48 Recursion in single-line function.

417

Error Messages

49 Line specified in ON statement not found.

50 File number out of range from 1 to 10.

51 File not currently assigned.

52 Improper volume label or mass storage specifier.

53 Improper file name.

54 Duplicate file name.

56 File name or directory undefined or inaccessible.

57 Attempt to use unknown device specifier.

58 Improper file type.

59 End of file found.

60 Physical or logical end of record found in direct access mode.

61 Defined record size too small for data item.

62 File is protected or wrong protect code specified.

63 Number of records or bytes per record exceeds 999999 or pro-
gram too big.

64 Medium overflow.

65 Incorrect data type.

66 You are not authorized to store this program.

67 Parameter <= 0.

68 Invalid line number encountered during MERGE, GET or
LINK.

69 Not allowed on HP-UX files.

77 Specified volume label not found.

79 Requested subprogram segment not present in LOAD SUB.

83 No access.

90 Mass storage system error.

91 Attempt to access a busy file.

92 Cannot get exclusive access to a specified file.

418

Error Messages

93 File opened in conflicting mode.

94 Specified file cannot currently be locked.

95 String not intact on file.

100 IMAGE specification expects a numeric item.

101 IMAGE specification expects a string item.

102 Numeric field specification is larger than internal buffer.

103 Item in PRINT USING list has no corresponding IMAGE spec-
ification.

120 Output field overflow

121 Improper value in CURSOR statement.

130 Parameter for REQUEST or RELEASE out of range.

131 Specified device not available.

132 Referenced device missing or wrong type.

133 Printer is down or broken pipe.

134 Printer is offline.

140 Improper spool file type.

143 Expansion of spool file would cause medium overflow.

150 Type of expression in CASE does not match type of SELECT.

151 Parameter out of range on INDENT.

152 Improper matching of structured construct.

153 No structured construct active.

155 Invalid statement specified in COMMAND.

156 More than one level of recursion not allowed in COMMAND.

170 HP-UX command fails.

419

Error Messages
Pack Errors

Pack Errors

200 Referenced line not a PACKFMT.

202 Insufficient dim length in PACK or insufficient current length
in UNPACK.

204 Conversion error.

205 UNPACK requires a source string of greater current length.

420

Error Messages
IMAGE Errors

IMAGE Errors

210 Bad status array.

211 No DBASE IS statement active.

212 Specified data set not found.

213 Too many variables in list.

214 IN DATA SET already active for data set.

215 Number of elements does not match.

216 Variable type does not match with associated field in set.

217 String length in list insufficient.

218 Variable in common.

219 Line referenced is not an IN DATA SET LIST statement.

220 Improper or illegal use of maintenance word.

221 Data set not created.

225 Incompatible data base.

226 Corrupt data base - must recreate it.

227 Corrupt data base - must erase in its entirety.

421

Error Messages
PREDICATE Errors

PREDICATE Errors

320 Set or item specifier is out of range or is an invalid set or item
name.

321 Relational operator is invalid.

322 The predicate specifier is not in a valid form.

422

Error Messages
SORT Errors

SORT Errors

230 Improper nesting of SORT statements, including DBASE IS
and IN DATA SET.

231 Cannot reactivate workfile, or file is not a workfile.

233 ** No read access to specified data set.

234 Missing or improper set linkage.

235 NO WORKFILE IS # statement active.

236 Improper data item or data item not found (also QFIND).

238 Improper synthetic linkage.

239 Insufficient space in workfile.

241 Improper operation attempted on workfile.

242 Improper READ# or PRINT# on workfile.

243 Workfile contains invalid information.

244 Data base corrupt.

246 Workfile not empty (QFIND).

247 Unexpected error accessing data base (QFIND).

248 Improper QFIND relation (QFIND).

249 Improper value type or improper number of value parameter
(QFIND).

423

Error Messages
Report Writer Errors

Report Writer Errors

250 BEGIN REPORT does not reference a REPORT HEADER
statement.

251 Report Writer is already active.

252 An END REPORT DESCRIPTION statement is missing.

253 Duplicate Report Writer section.

254 Invalid blank lines in PAGE LENGTH statement.

255 Expression in a Report Writer statement evaluates to an unac-
ceptable value.

256 A (GRAND) TOTALS ON is improperly positioned.

257 A Report Writer operation was requested while outside the pro-
gram scope.

258 Effective page length is less than three lines.

259 Illegal execution of a Report Description section statement.

260 Insufficient space for printed output within the current page.

261 Left margin specified is less than 1 or greater than current
printer width.

262 Control variable in BREAK WHEN statement has greater
length.

263 A DETAIL LINE statement may not occur in the Report
Description section.

264 Level parameter is out of range from 0 thru 9.

265 (GRAND) TOTALS ON statement not active for the level
requested.

266 Sequence parameter is out of range for (GRAND) TOTALS
ON statement.

267 Illegal WITH number LINES parameter in header, trailer or
detail line.

268 OLDCV($) function references a level which does not have a

424

Error Messages
Report Writer Errors

break defined.

269 OLDCV($) function does not match the data type for the con-
trol variable.

270 PRINTER IS statement may not be executed while Report
Writer is active.

271 A Report Writer statement may not be used recursively.

425

Error Messages
FORMS Errors

FORMS Errors

290 Not allowed when form is active.

291 Not allowed within form image.

292 Attempt to input after last field of form.

293 Attempt to output after last field of form.

294 Not allowed unless form is active.

426

Error Messages
TIMER Errors

TIMER Errors

302 Date or time cannot be changed here.

303 ON DELAY value is incorrect.

427

Error Messages
TIO Errors

TIO Errors

310 Port ordinal out of range from 11 thru 20.

311 Priority value out of range from 1 thru 15.

312 Invalid address in ONinterrupt statement.

313 Can’t access port, or maximim number of ports already
REQUESTed.

314 Must do REQUEST before ON INPUT.

428

Error Messages
TASK Errors

TASK Errors

400 Task functionality not available or unable to start task.

401 Specified TASKID not a task.

402 Specified TASKID not a secondary task or not available.

403 Executing task is not a primary task or currently in background.

413 Protection violation in SEND SIGNAL# statement.

The error codes have different meanings for the REQUEST #, ATTACH #, and
DETACH statements. The error numbers in the table are execution errors caused
by unsuccessful commands with no optional result parameter. The result column
in the table is the returned status indicating the outcome of the command.

Table 31 REQUEST # Statement

Error number Result Description

none 0 Ownership granted.

400 2 Task functionality not available, or unable to start pro-
cess.

401 1 Specified TASKID not a valid task.

402 2 Specified TASKID not a secondary task or

already owned by another user.

403 3 Executing task is not a primary task.

Table 32 ATTACH # Statement

Error number Result Description

none 0 Attach initiated.

400 1 Task functionality not available.

401 1 Specified TASKID not a valid task.

402 2 Specified TASKID not owned by executing task.

403 3 Executing task not a primary task, or currently in back-
ground.

429

Error Messages
TASK Errors

Table 33 DETACH Statement

Error number Result Description

403 3 The terminal is busy transferring files.

430

Error Messages
User Defined Types Errors

User Defined Types Errors

The following runtime errors are used with types:

900 Undefined base type

901 Nested types are not supported

902 Statement not allowed in type definition

903 Illegal or incomplete type definition

431

Error Messages
HP-UX Errors

HP-UX Errors

Listed here are the HP-UX system errors that might occur within the Eloquence
environment:

860 Old password does not match.

861 Improper number of array elements.

870 Improper POPUP BOX format.

871 Improper number of text lines in POPUP BOX.

872 Improper number of buttons in POPUP BOX.

873 Improper button preset value in POPUP BOX.

874 POPUP BOX does not fit on screen.

875 POPUP BOX positioned outside screen.

999 Program or forms file not compatible.

1000 System Files table full

1002 Request would result in deadlock

1004 Keyword not recognized.

1005 HP-UX resource table overflow.

432

Error Messages
HP-UX Errors

433

Glossary

Glossary

ASCII ASCII is the acronym for American Standard Code for Information Interchange. It is a standard way of rep-
resenting characters and printing commands within a computer.

array A collection of data items of the same type having from one to six dimensions.

array elements Individual data items in an array.

array identifier A numeric array variable name followed by (\ast), indicating the use of the entire array variable
(for example, A(\ast)).

array variable name An array variable name consists of 1 to 15 characters, followed by a subscript. The first char-
acter must be an uppercase (capital) letter while the remaining characters must be lowercase letters, digits, or the un-
derscore character (_). Array variable names are divided into two types—string and numeric. A string array variable
name must end in a dollar sign ($).

bit bucket An imaginary device where data is dumped and cannot be retrieved. Output from a program that you do
not want sent to a terminal, printer, or file can be assigned to the bit bucket.

catalog spec The optional catalog spec is a string expression of 1 through 6 characters in length. When specified,
only those files whose names begin with that combination of characters are listed. A catalog spec is used with the
CAT[ALOG] statement.

character A letter, number, symbol, or any eight bits defined by the CHR$ function.

character position Each position on a screen or printed page has a number associated with it. A screen has positions
1 through 80, while a printer has 1 through 132.

constant A fixed number within the system range, such as 2.12.

current line The next program line to be executed. Normally the first line in memory, unless the program was sus-
pended by HALT or PAUSE.

data list A data list is a collection of items, separated by commas. The items can be variables, array identifiers, and
numeric or string expressions. Including the optional END causes an EOF mark to be printed at the end of the data.
Otherwise, an EOR mark is placed after the data list is written.

default device The device to which all file storage operations are directed if no other device is specified. The default
device is defined in the global or user configuration file.

device address Each device connected to the HP 9000 responds to a unique address. The address is an integer be-
tween−2 and 99. For a list of reserved addresses, see page 249 in this manual.

display list A display list is used when displaying output to the screen. The list may contain variable names, array
names, numeric expressions, string expressions, or TAB, SPA, LIN, and PAGE functions. All items on the list must
be separated by commas or semicolons.

file name A 14 to 255 character string with the exception of a comma or a colon. It is recommended that a file name

434

Glossary

not include wildcard characters. Included in the file name is a five character extension—.DATA, .PROG, .FORM,
.ROOT, or .DSET. Refer to page 195 for more information.

file number The number assigned to a data file by an ASSIGN statement. Its range is 1 through 10.

file spec File spec is a string expression of the form:file name[volume spec]

The optionalvolume spec is needed when addressing a mass storage device other than the default device.

formal parameters Formal parameters are used to define a subprogram.

formal parameter list The formal parameter list is used to define subprogram variables and relate them to calling
program variables. It includes non-subscripted numeric and string variable names, array identifiers, and file numbers.
Parameters must be separated by commas, and the parameter list must be enclosed in parentheses.

format string Format strings consist of a list of specifiers, each separated by a delimiter. Each specifier creates part
of an output format are numeric fields, string fields, blanks, or carriage control. Each numeric or string field specifier
corresponds to an item in a print-using list, indicating how that item is to be output.

function A function is a routine that manipulates numeric or string data, and produces a numeric or string value as a
result. A set of commonly used functions is supplied as part of the Eloquence language. These functions are known as
built-in functions.

function name ($) Whatever variable name you give to a function of your own creation is that function’s name.
Built-in functions are already named, and are listed in page 125 of this manual.

integer precision variables Integer precision variables hold whole numbers only (no fractional part). Integer-preci-
sion numbers range from−32768 to 32767. They are held in binary 2’s complement form (not exponent and mantissa).

key number There are 24 programmable softkeys, numbered 1 through 24.

line id A program line can be identified either by its line number (GOTO 150) or, if present, its label (GOTO Rou-
tine).

line id list This list consists of two or more line ids separated by commas. Computed GOTO statements use line id
lists to branch according to the value of a variable.

line label A unique name assigned to a program line. It can contain up to 15 alphanumeric characters including the
underscore. The first character must be a capital letter. The line label is separated from the line number by one or more
spaces and must be followed by a colon.

line number An integer from 1 through 32767.

line width Line width is a numeric expression from 20 through 264, which specifies the number of characters output
per line for PRINT and PRINT USING statements. If you omit line width, either the previously set line width or the
default width for that device will be used (display default = 80 char, all others = 132 char). Specifying -1 sets an infinite
line length.

matrix A matrix is a two-dimensional array.

multiple-line function subprogram The multiple-line function subprogram is designed to return a value to the call-

435

Glossary

ing program, and is used like a built-in function such as SGN or CHR$. It is defined using the DEF FN statement.

number of linefeeds The number of linefeeds can be any numeric expression; rounded to an integer, its range is from
-32768 through 32767. Linefeeds cause lines to be skipped. If a negative number is given for number of linefeeds, its
absolute value is used.

number of records When creating a data file, you must specify the number records that you want your file to have.
The number of records specified can be a numeric expression from 1 through 999999.

numeric expression The combination of one or two operands (values) with an operator constitutes a numeric expres-
sion. The operator may be arithmetic, string, relational, or operational.

numeric variables Numeric variables hold numbers, both positive and negative, integer or fractional. Numeric vari-
ables are themselves split into three types—integer, short and real.

numeric variable name A numeric variable name is from 1 to 15 characters, the first of which must be a capital let-
ter. Remaining characters must be lowercase letters, digits, or the underscore character (_).

parameter Parameters are values in certain variables that are passed between a program and a subprogram. For ex-
ample, the variable “Food$” may contain the value “Apple” in a main program. When the parameters are passed, “Ap-
ple” may be sent to the variable “Fruit$” in the subprogram. The variable name was not passed, but the value contained
in that variable was.

parameter lists Values are passed between a subprogram and the calling program segment using parameter lists.
There are two kinds of parameters—formal and pass.

pass parameters Pass parameters are used to pass values from the main or calling program to the subprogram. Each
pass parameter must correspond to a formal parameter.

pass parameter list The pass parameter list used in calling the subprogram can include numeric and string variable
names, array elements and identifiers, numeric and string expressions, and data file numbers. The pass parameter list
must be enclosed in parentheses, and the parameters must be separated by commas.

program debugging Finding and fixing the mistakes in a program. Three methods of program debugging are avail-
able—single-stepping, program tracing, and program cross-referencing.

program segment The term program segment refers to either a main program or a subprogram.

prompt Prompts are any words or symbols that appear on the CRT screen when input is needed. INPUT and LINPUT
statements use prompts to ask for specific data input. A prompt is not limited in any way, except possibly in length.
An Eloquence line cannot exceed 160 characters; this means that the sum of a statement and its prompt may not exceed
160 characters.

real precision variables Real precision variables are allotted twelve significant digits of precision. They are the most
accurate form of holding numeric data but take up the most space.

record length Record length is a numeric expression specifying the length of logical records in bytes, rounded up to
an even integer. The length can be from 1 through 65534 bytes. If not specified, the default is 256 bytes.

record number Records are numbered sequentially from 1. You know how many records you have if you created
the file. (See the definition for “number of records”)

436

Glossary

redim subscripts Numeric expressions separated by commas and enclosed in parentheses to redefine array working
bounds. (The number of dimensions cannot change, and the total number of elements cannot increase over the number
originally dimensioned).

return variable A return variable can be a simple numeric variable or an array element. It is included in some state-
ments to check for errors. Its value is returned after execution to indicate various results. The results are numbers that
stand for different errors.

short precision variables Short precision variables hold whole or fractional numbers. They are represented internal-
ly with a mantissa of six significant digits and an exponent in the range from−63 through 63.

simple variable A simple variable holds either one number (simple numeric variable) or a string of characters (sim-
ple string variable).

standard printer The output device selected by the SYSTEM PRINTER IS statement.

statement Statements are any valid, executable program command. Statements may be one of two types: 1) Declar-
atory (for example, DIM, DATA, REM, SUB, COM) 2) Executable (for example, GOTO, STOP, INPUT, PRINT).

string A string is a series of ASCII characters which can be stored in a string variable. (In Eloquence a string may
also hold display enhancement and line drawing characters.)

string expression String expressions may contain any combination of string characters within quotes, string variable
names, substrings, and string functions.

string variable A string variable can hold any sequence of ASCII characters.

string variable name A string variable name has from 1 to 15 characters with $ added at the end. The first character
must be a capital letter; the remaining characters must be lowercase letters, digits, or the underscore character (_).

subprogram A subprogram is a group of one or more statements that performs a certain task under the control of the
calling program segment.

subprogram name A subprogram is separate from the program that calls it. Therefore, the subprogram has its own
name consisting of one to six characters, including letters, digits, or the underscore. The subprogram name must be
lowercase.

subroutine subprogram A subroutine subprogram is designed to perform a specific task. It is defined using the SUB
statement.

subscript A subscript is used whenever a variable represents an array. A subscript consists of two or more integers
separated by commas and enclosed in parentheses. These integers specify the array’s size. The subscript comes imme-
diately after the array variable name. For example, M(2,3) represents a two dimensional array named M with upper
bounds of two and three. (2,3) is the subscript.

superuser The system administrator for the HP-UX operating system.

text A string of characters, quoted or unquoted.

unit spec A string expression of the form: :A....Z[select code[,device address[unit code]]]

437

Glossary

volume letter: See the definition for “volume letters.”

select code: An integer from 1 through 15.

device address: An integer from 0 to 9.

unit code: An integer from 0 through 9.

variable A variable describes a location in memory in which values can be stored. Computer languages use variable
names to represent these locations. Then each time that variable name is quoted, the computer looks up the correspond-
ing memory location and finds the value. The value contained within a variable may be altered, hence the name “vari-
able”.

variable list A series of numeric or string variables, separated by commas.

variable name A variable name is from 1 to 15 characters, the first of which must be a capital letter. Remaining char-
acters must be lowercase letters, digits, or the underscore character (_). Each string variable name must end in a dollar
sign ($). Variable names must be unique.

vector A vector is a one-dimensional array. The size of a vector is limited by memory size.

volume label A one- to eight-character string assigned to an HP-UX directory in either the global, group, or user con-
figuration file. Blanks, nulls, commas, and colons are ignored.

volume spec A string specifying either a volume label (preceded by a comma) or a unit spec.

438

Glossary

439

Index

A
statements

CAT 205
arrays

DIM 101
elements 92
numeric 90
OPTION BASE 100
REDIM 106
size 90
storage and retrieval 236
string 78

C
C argument types

EqChar 360
EqInt 360
EqReal 360
EqString 360
EqVoid 360

C function type 360
C functions

dll_cleanup 366
dll_setup 366
EqArgInfo 365
EqFuncInfo 364
EqMaxStrlen 365
EqMkstr 366
EqStr2str 366
EqStrcat 365
EqStrcmp 366
EqStrcpy 365
EqStrlen 365
EqSubstr 366
str2EqStr 366

C variable

440

dll_debug 367
commands

CONTINUE 40
FETCH 41
INDENT 55
LIST 42
REN 40
RUN 39

D
development version

starting 36
display features

alternate character sets 284
field enhancements 272
formatted output (IMAGE) 280
input and output fields 275
protecting and unprotecting lines 274
restrictions on ASCII control characters 251

E
error messages

internal errors 35, 53
run-time errors 35, 53
syntax errors 35, 53

F
files

cataloging 205
closing 237
copying 247
creating 217
data access 201
data storage requirements 245
EOF 200
EOR 200
error trapping 243
locking 246
multi-tasking considerations 326

441

naming 198
opening 218
purging 238
records in 200
renaming 248
storage of 239
types of 200

functions
ABS 138
AOVFL 339
AREAD$ 338
built-in numeric 138
built-in string 143
CHR$ 143, 146
CLOCK 311
COL 307
CURKEY 138, 165, 342
DATE$ 310
defining 148
DROUND 138
ERRMSG$ 143
EXP 138
FRACT 138
GETENV$ 143
INT 138
LDSPEC$ 143
LEN 143
LGT 138
LIN 266
LOG 138
LWC$ 143
MAPPNTR$ 143
MAPVOL$ 143
MAX 138
MIN 138
MMSPEC$ 143
multiple-line 184
NUM 143, 146
NUMREC 138

442

OWNID 331
PAGE 267
PI 138
POS 143
PROUND 138
RANDOMIZE 138
REC 241
RES 138
REVISION 138
REVISION$ 143
RND 138, 142
ROW 307
RPT$ 143
SCAN 143
SGN 138
SHOWTASK 332
SIZE 241
SPA 266
SQR 138
SUM 307
SYSID$ 147
TAB 265
TASKID 138
TIME$ 310
trigonometric 140
TRIM$ 143
TSTAT 331
TYP 239
UPC$ 143
USERID 138
VAL 143, 145
VAL$ 143, 145
WRD 241
XOWNID 331
XPOS 272
YPOS 272

M
matrices

443

arithmetic operations on 305, 306
assigning values to 303, 304
functions 307
operations 308
reading and printing 300, 301
storing and retrieving 302

memory
consumption 124

multi-tasking
configuration requirements 317
database considerations for 327
error codes 321
example program 321
file access 326
functions 331
performance considerations 329
primary tasks 316
programming considerations for 325
secondary tasks 316
statements 318, 320
using HP-UX commands 322

O
operators

arithmetic 127
binary 134
definition of 126
logical 132
order of execution 136
relational 130

P
ports

device addresses 252
port numbers 252
printer numbers 252

printer 253
printers

multi-tasking 325

444

printer control functions 295
program debugging

cross-referencing 65
HOP 59
single-stepping 59
tracing 59

programs
comments within 30
entering 28
listing 55
multi-tasking considerations 325
running 50
stopping 51

R
run-time version

starting 22

S
SCRATCH 67
SFA 371
sfagen 373
sfarpt 374
SHOWTASK 332
SIGNAL 332
spool files 292

appending to 294
creating 292
dumping (COPY) 293
error handling 294
recording into 292

statements
ACCEPT 116
ASSIGN 218
ATTACH 319
ATTACH # 318
AUTO 40
BEEP 257
CALL 187

445

CALL DLL 357
CATCLOSE 207
CATGETMSG 207
CATOPEN 207
COM 103
COMMAND 30
COPY 247
COPY (spool files) 293
CREATE 217
CURSOR 268
DATA 107
DEF FN 148, 184
DEFAULT 137
DEL 41
DEL DLL 357
DEL FN 189
DEL SUB 189
DETACH 319
DIM 101
DINTEGER 103
DISABLE 165, 342
DISP 258
EDIT 112
ENABLE 165, 342
END 51
ENTER 113
FIXED 86
FLOAT 87
FN 148
FORNEXT 158
GET 212
GOSUB 162
GOTO 154
IFTHEN 156
IFTHENELSE 171
IMAGE 280
INPUT 110
INTEGER 102
KBCODE 116

446

LDISP 260
LENTER 114
LINK 213
LINPUT 111
LOAD 211
LOAD DLL 356
LOAD SUB 211
LOCK# 246
LOOPEND LOOP 172
MASS STORAGE IS 204
MAT INPUT 303
MAT PRINT 301
MAT READ 300
MAT-arithmetic 306
MATCON 303
MAT-copy 305
MAT-copy (scalar) 305
MATCSUM 308
MAT-initialize 304
MATRSUM 308
MATZER 304
MERGE 214
MSI 204
NORMAL 63
OFF DELAY 314
OFF END# 244
OFF ERROR 167
OFF HALT 169
OFF INPUT # 339
OFF KEY # 165
ON DELAY 314
ON END# 243
ON ERROR 167
ON HALT 169
ON INPUT # 337
ON KEY # 164
ONGOSUB 163
ONGOTO 155
OPTION BASE 100

447

PAUSE 51
PRINT 278
PRINT ALL IS 254
PRINT USING 280
PRINT# (direct) 228
PRINT# (direct-word) 232
PRINT# (serial) 222
PRINTER IS 253
PURGE 238
READ 107
READ LABEL 208
READ# (direct) 230
READ# (direct-word) 233
READ# (serial) 224
REAL 103
REDIM 106
REFRESH 264
RELEASE 341
RELEASE # 319
RENAME 248
REPEATUNTIL 173
REQUEST 255, 341
REQUEST # 318
RESAVE (RE-SAVE) 214
RE-STORE 211
RESTORE 109
SAVE 212
SCRATCH 67
SELECTEND SELECT 174
SHORT 103
SLEEP 51, 313
SOFTKEY On/OFF 166
SPACE DEPENDENT 33
SPACE INDEPENDENT 33
STANDARD 86
STOP 51
STORE 54, 209
SUB 187
SUBEND 187

448

SYSTEM PRINTER IS 253
TRACE 61, 62
TRACE ALL 62
TRACE ALL VARIABLES 62
TRACE PAUSE 61
TRACE VARIABLES 62
TRACE WAIT 61
UNLOCK# 246
WAIT 51, 312
WHILEEND WHILE 172
XASSIGN 218
XLENTER 115
XPURGE 238

storage
data 216

strings
definition of 78
null 81
string array defaults 79
string arrays 78
string concatenation 81
string expressions 79
substrings 79

subprograms
adding and deleting 189
busy lines 193
COM statements, use of 190
default state of 189
definition of 177
multiple-line function 184
parameters 179
subroutine 187

T
trigonometric functions 140
TYPEOF$ 144

V
variabels

449

numeric precision 84
variables

assigning values to 107
declaring 100
dimensioning 100
display formats 85
format FIXED 86
format FLOATing-point 87
format STANDARD 86
integer/dinteger numeric ranges 84
names 77
numeric 84
real numeric ranges 84
rounding of 88
string 78
types of 75

Y
YPOS 272

