
1

Eloquence

Eloquence Forms Manual

B.06.32
Edition E1202

© Copyright 2002 Marxmeier Software AG.

2

Legal Notices

Legal Notices

The information contained in this document is subject to change without notice.

MARXMEIER SOFTWARE AG MAKES NO WARRANTY OF ANY KIND
WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. Marxmeier Software AG shall not be liable for
errors contained herein or for incidental or consequential damages in connection
with the furnishing, performance or use of this material.

This document contains proprietary information which is protected by copyright.
All rights reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as
set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013. Rights for non-DOD U.S. Government
Departments and Agencies are as set forth in FAR 52.227-19 (c) (1,2).

Acknowledgments

© Copyright Marxmeier Software AG 2002. All Rights Reserved.

Marxmeier Software AG
Besenbruchstrasse 9
42285 Wuppertal
Germany

Eloquence is a trademark of Marxmeier Software AG in the US and other coun-
tries.

© Copyright Hewlett-Packard Company 1990-2002. All Rights Reserved.

This software and documentation are based in part on HP software and documen-
tation under license from Hewlett-Packard Company. HP is a trademark of
Hewlett-Packard Company.

3

Printing History

Printing History

The manual printing date indicates its current edition. The printing date will change
when a new edition is printed. Minor changes may be made at reprint without
changing the printing date. New editions are complete revisions of the manual.The
dates on the title page change only when a new edition or a new update is pub-
lished.

Manual updates may be issued between editions to correct errors or document
product changes. Manuals that are published on the Eloquence website (www.hp-
eloquence.com/doc) may be updated more often, please visit this website periodi-
cally for the most recent versions. To ensure that you receive the updated or new
editions, you should also subscribe to the appropriate product support service.

The software code printed alongside the date indicates the version level of the soft-
ware product at the time the manual or update was issued. Many product updates
and fixes do not require manual changes and, conversely, manual corrections may
be done without accompanying product changes. Therefore, do not expect a one to
one correspondence between product updates and manual updates.

Printed in the Federal Republic of Germany.

First Edition Apr 1990 A.01.00

Second Edition July 1991 A.03.00

Third Edition January 1997 A.06.00

Fourth Edition October 1997 A.06.00

Fifth Edition (E1202) December 2002 B.06.32

4

Printing History

Contents

5

Table of Contents

1
Introduction 7

Conventions . 9

Forms Introduction . 10

2 Creating Forms . 13

Display Enhancements . 15

Create Form . 17

Store the Form . 25

Summary of CFORM . 26

3 Modifying Forms . 27

4 Interaction between Programs and Forms 31

Form Link Information . 32

Input and Output Field Pointers 34

Input and Output to the Form 35

TAB and RETURN . 40

Contents

6

5 Controlling Forms . 41

The GET FORM Statement . 43

The CLEAR FORM Statement 44

The CURSOR Statement . 45

TFNUM Function . 47

The EXIT FORM Statement . 48

The DELETE FORM Statement 49

The LOAD FORM Statement 50

The STORE FORM Statement 51

Example Program . 52

6 Printing Forms . 55

Multiple Forms . 57

Printer Selection . 60

Display Enhancements and Fill Characters 62

Version Selection . 64

Printing Forms . 66

CFORM and MFORM Error Messages 68

PFORM Error Messages . 70

Program Error Messages . 71

7

1

Introduction

The Eloquence Forms software gives you a means to draw a form image on the
display screen. You can also specify input and output fields and the order in which
these fields are to be accessed by a user and a program. Once a program has been
written that uses a form, that form can be modified without having to modify the
program.

8

Introduction

The process of creating forms is described in page 13 . Modifying a form is
described in page 27 . The information about the form that a program uses is
described in page 31 . The form control statements are described in page 41 .

NOTE: Eloquence Forms software requires a character I/O interface and so it is not supported
on the NT platform.

9

Introduction
Conventions

Conventions

The statements in this manual use the same syntax conventions as in theElo-
quence Manual.

• Bold type is used when a new term is introduced.

• Computer font indicates text to be input exactly as shown or text that is output
from the system.

• Italic type is used for emphasis and titles of publications. It is also used to indicate
parameters that are user defined.

• KEYCAP represents a key on the keyboard.

• Shading represents the softkeys displayed on the computer screen.

• …indicates that the previous variable can be repeated.

• [] indicates that information inside the brackets is optional. If there are brackets
within brackets, the information within the inner bracket may only be specified if
the information in the outer bracket is specified. Information may also be stacked
in brackets. For example, A or B or neither may be selected when the following is
shown:

• { } indicates that one of the choices stacked within the braces must be selected. For
example, A or B or C must be selected when the following is shown:

NOTE: Notes contain important information that is set off from the text.

A

B

A

B

C

10

Introduction
Forms Introduction

Forms Introduction

A form is an image that is displayed, providing input and output formats for
program use. The user then enters the correct information into each specified
blank space. Instead of prompting for each item, the program can display the
form. For example:

The user fills in the blanks, pressing eitherRETURN orTAB after each item.
(The way in which the program is written will determine which of the two
keys can be used. Refer to page 31). The cursor then moves automatically to
the next item to be input.

A program can also output information to a form. Assume a program requests
the number of hours an employee worked in a week. A form for this might
look like the following:

11

Introduction
Forms Introduction

where the program fills in the name and the user fills in the hours.

The two previous examples show very simple forms; it may have been easier
to use simple input and output statements. However, if more information
about a topic is wanted, the form becomes the easier method. For example,
assume a program keeps track of customer shipments. One form it uses could
look as follows:

The program can display this form and prompt the user to fill it in. The pro-
gram can read entries, then blank out the form and begin again.

12

Introduction
Forms Introduction

A form can be created to look like a printed form currently in use. In this way,
a user can easily type the information from a paper to an identical form dis-
played on a terminal.

13

2

Creating Forms

To create a form, use the Create Form (CFORM) program. Start Eloquence and
type the following:

RUN”CFORM[,volume label]” RETURN

After you execute the RUN command, the display shows you the definition of
each of the softkeys on the display and shows a short explanation of each one.
This is called the initial CREATE FORM menu.

14

Creating Forms

NOTE: For the CREATE FORM menu to appear, a VOLUME statement pointing to the directory
/opt/eloquence/share/prog must be included in the global configuration file eloq.config.
The sample global configuration file d.eloq.config contains such a statement (VOLUME
SYSTEM :Z2,7,0 /opt/eloquence/share/prog).

Initially the softkeys are defined as follows:

INPUT ENHNCMNTS — The input enhancements softkey. When an area (or
field) is to be used exclusively for input, you can set 1) the fill character for that
field [a fill character is the character that is repeated in the field during the creation
of the form] and 2) the way in which the character is displayed [inverse video,
underline, etc.].

OUTPUT ENHNCMNTS — The output enhancements softkey. A field can be
defined exclusively for output. This field can be visually enhanced in the same
manner as an input field.

IN/OUT ENHNCMNTS — The input and output enhancement softkey. A field
can also be defined to accept both input and output. This field can be visually
enhanced in the same manner as an input or an output field.

CREATE FROM FORM — Allows you to specify a form that already exists to be
used as a basis for creating a new form. When this key is pressed, a new menu is
displayed. See the sub-section titled page 17 .

CREATE NEW FORM — Clears the display so you can create a new form. A
new menu is displayed.

EXIT PROGRAM — Terminates the program.

15

Creating Forms
Display Enhancements

Display Enhancements

When CFORM is run, a short explanation of each softkey is displayed. In addi-
tion, the current enhancements for input, output and input/output fields are shown.
To change one of the field enhancements, press the related softkey.

For example, assume that the enhancement for input fields is inverse video and the
fill character is a blank. To change the enhancements or fill character, you press
the INPUT ENHNCMNTS softkey. The following information is shown on your
display:

SET FILL CHARACTER — Allows you to change the fill character. A fill char-
acter is used to indicate fields while the form is being created. The character is
replaced by blanks when the form is stored. You will be asked to enter the fill
character. The character will appear in the field next to CURRENTLY
SELECTED ENHANCEMENTS after you pressRETURN. You may change this
character as many times as you wish by pressing this softkey again and entering a
new character.

INVERSE VIDEO, BLINKING, UNDERLINE and HALF BRGHT — Toggled
on and off. The on or off state is displayed. In this example INVERSE VIDEO is
on, BLINKING is off, UNDERLINE is off, and HALF BRGHT is off.

RESET — Changes the enhancements and fill character to the value they had
when the input, output, or input/output enhancement key was pressed.

16

Creating Forms
Display Enhancements

EXIT — When you are satisfied with the selected enhancement, press the EXIT
softkey to return to the initial menu.

17

Creating Forms
Create Form

Create Form

After you have selected the field enhancements, you are ready to create the form.
There are two keys you can use to begin this process.

CREATE FROM FORM — Allows you to specify a form file name that already
exists. (The file name may contain a device specifier or a volume label). The old
form can be used as a basis for the new form. The old form will be displayed and
a new menu will be set.

CREATE NEW FORM — Clears the display so you can create a completely new
form. (Refer to the main forms-definition menu in page 17 .)

Creating a Form from an Existing Form

Press the CREATE FROM FORM softkey. The following screen appears:

CHANGE ENH. USAGE — Allows you to select the I/O-field enhancements
from two sources:

• The original definition of the form you are modifying.

• The definitions selected previously. The current selection is indicated in the upper part
of the screen.

Enter the file name of the existing form and pressRETURN. The main forms-def-
inition menu will appear, showing the following softkeys:

18

Creating Forms
Create Form

IN/OUTPUT FIELDS — Defines the location and length of input and output
fields.

INPUT ORDER — Specifies the order in which the program reads the input
fields.

TAB ORDER — Sets the order in which the user accesses each input field.

OUTPUT ORDER — Specifies the order in which the program accesses each out-
put field.

LAYOUT FUNCTIONS — Used with the keyboard, it allows you to draw images
(which are not fields) on the screen and use line-draw characters.

CHANGE DEFAULT — Allows you to change the current set of default enhance-
ments. See the sub-section titled page 19 .

STORE FORM — Stores the form on a disk. The file name specified can be a
maximum of nine characters. The extension .FORM is automatically appended to
the specified file name.

RESTART — Generates screen below.

19

Creating Forms
Create Form

Changing the Default Enhancements

When you press the CHANGE DEFAULT softkey, the following screen appears:

The default enhancements of input fields, output fields and input/output fields are
changed by pressing the INPUT ENHNCMNTS, OUTPUT ENHNCMNTS or IN/
OUT ENHNCMNTS softkeys respectively. This action takes you into the display
enhancement selection screen. You can then proceed as described in the section
titled page 15 (earlier in this section).

Input and Output Fields

The input and output fields are the means by which an application reads and
writes to a form. These fields are defined by the following:

• The number and location of input and output fields.
• The order in which the input and output fields are accessed by the program and the user.

Use the IN/OUTPUT FIELD softkey to define the number and length of the input
and output fields. When IN/OUTPUT FIELD is pressed, the following menu
appears:

20

Creating Forms
Create Form

INPUT FIELD — Defines an area (a field) that can only be used for input. You
can define a maximum of 200 input fields for each form. To define an input field,
position the cursor at the first character position and press INPUT FIELD. If the
field is to be ten characters long, for example, press this softkey ten times. The
input field enhancements and fill character are added automatically. (You defined
the field enhancements and fill character before creating the form image.) A line
may contain multiple input fields; however, input fields on the same line must be
separated by at least one non-input field character.

OUTPUT FIELD — Defines a field that can only be used for output. You can
define a maximum of 200 output fields. Define each output field in the same man-
ner as an input field.

IN/OUT FIELD — Defines a field that can be used for either input or output.
Define each input/output field in the same manner as an input field or output field.
Input/output fields must be separated from both input and output fields by at least
one non-field character.

DELETE INPUT — To delete a field previously defined as an input field, you
position the cursor on the left of the field to be deleted and press DELETE
INPUT. If the field is an input/output field, only the input portion is deleted. That
is, the input/output field becomes an output-only field. You delete everything to
the right of the cursor, so you can use this facility to shorten field.

DELETE OUTPUT — Performs the same function as the DELETE INPUT soft-
key, and in the same way, except DELETE OUTPUT works on output fields.

MOVE INPUT — Moves an input field from one area of the form to another.
First, position the cursor within the input field and press MOVE INPUT. A new
menu appears:

Move the cursor to the location where the first character of the field is to be. Then
press NEW LOCATION. The input field will be moved to the new location. The
length of the field does not change. If the relocation is accomplished, with no
errors, an EXIT is performed automatically. If the new location of the field would
cause an overlap with another field or if the field would extend beyond the right
side of the display, the relocation will not take place. If you decide not to move the
field, press EXIT to return to the previous menu.

MOVE OUTPUT — Allows you to move an output field in the same manner as
moving an input field.

21

Creating Forms
Create Form

You can create, delete and move as many fields in the form as you wish. When
you are satisfied with the number, length and location of the fields, press EXIT.

KEYBOARD — You should only use the softkey sets when you are creating and
manipulating forms. If you use the keys on the keyboard, especially such keys as
“Delete line”, “Insert line”, “Delete char”, and “Insert char”, you might get some
unexpected results; your orders may be muddled and incoherent.

In-/Output Order

Assigning orders to the fields is necessary, since this information will be needed
when the form is used by the application.

Input Order The order in which the program will read data from the form.

Output Order The order in which the program will write data to the form.

Tab Order The order in which the cursor moves from one input field to the
next whenTAB is pressed.

Each input field must be assigned an input- and tab order, and each output field
must be assigned an output order. If no order has been specified, a default order is
assumed by the CFORM program.

To specify a different input order, press the INPUT ORDER softkey. The form
fields are redrawn with the input-field numbers in the input fields. The output
fields are not shown.

To specify a different tab order, press the TAB ORDER softkey. The form fields
are redrawn with the tab field-numbers in the input fields. The output fields are not
shown.

To specify a different output order, press the OUTPUT ORDER softkey. The form
fields are redrawn with the output-field numbers in the output fields. The input
fields are not shown.

You can always see which order you are currently manipulating, since it is indi-
cated in the EXIT softkey.

There is a softkey menu for each of the order (input, tab, and output). Here is an
example of the input order:

CLEAR field #s — Clears all the field numbers from the form.

22

Creating Forms
Create Form

VALIDATE field #s — Takes the numbers currently in the fields and verifies that
they represent a correct sequence of order numbers. The sequence of numbers will
be corrected if necessary. If bad numbers, such as “ABC” or “12.3.34”, are given,
no such correction will take place. (Refer to page 23 for more details on number-
ing.) This softkey only validates numbers on the screen, it will not set the order
numbers. If you want to store the form later with exactly these order numbers, use
the SET new order softkey).

ENTER this fld# — Allows you to type in a number for a field, regardless of the
size of the field. A $ sign is displayed in a field if the number requires more space
than is available in this field. Position the cursor in the field to which you wish to
assign a number. Press this softkey, and the prompt ENTER ORDER NO:
____________ …will be temporarily inserted in a line above the field. The rele-
vant field will be marked “#”. Type in the new number and pressRETURN. If the
field is too small to display the entire number, a $ sign will be placed in that filed,
showing that a number has been assigned to that field.

EXPAND this $ — This softkey allows you to view the $ numbers on the screen.
A $ sign is visible in any field whose order number is too large to be displayed in
that field. To view the number, position the cursor in the relevant field and press
EXPAND this $. The number will be displayed in the lower part of the softkey on
the screen.

TAB->INPT field #s — This softkey is only available when you are defining the
input order. It will change the setting of the input order to be the same as the tab
order, providing you with a frequently-used input convention in the form of a soft-
key.

INPT->TAB field #s — This softkey is only available when you are defining the
tab order. It will change the setting of the tab order to be the same as the input
order.

SHOW old order — This softkey displays the order which is currently SET. It
may be different from the order displayed before you pressed this softkey. Use
this softkey to view the original order after you have made some changes, but
before you have made these changes permanent by pressing the SET new order
softkey.

SET new order — When you press this softkey, the system first of all validates the
numbers in the fields (see VALIDATE for more details). The resulting order after
the system validation is complete now becomes the valid order. Note that when
you STORE a form, the order is only changed if you press the SET new order
softkey first. You can re-examine the current valid order by pressing the softkey
SHOW old order.

23

Creating Forms
Create Form

EXIT order — This softkey returns you to the previous menu.

KEYBOARD — You use the keyboard to directly type in the relevant numbers in
the fields, except for those fields which are too small to display that number. Use
the ENTER this fld# softkey to input numbers which are too long for the respec-
tive field. You must not type the $ sign in a field from the keyboard.

Hints on Order Numbers

• A valid order-sequence for “n” fields starts at 1 and ends with “n”, consisting of posi-
tive integers.

• The default sequence of numbering is from top left to bottom right.

• Blank fields are given the value 0 prior to the automatic correction. If there are any gaps
in the numbering sequence or if more than one field has the same number, corrections
are made automatically.

• When the automatic corrections have been made, the process attempts to retain all
unique numbers with values between 1 and “n”.

• Numbers with fractions can also be typed in. This means you can insert a new field
where you want within the existing string.

Layout Functions

Use the LAYOUT FUNCTIONS softkey to draw the image of the form. The
images are all non-field parts, such as descriptive information or line-draw
images.

INVERSE HERE, BLINKING HERE, UNDERLINE HERE and HALF BRGHT
HERE — Change the character accordingly at the current cursor position. For
example, if you want to emphasize the form’s title by using inverse video, posi-
tion the cursor at the first character of the title and press the softkey INVERSE
HERE several times until all the characters are highlighted.

LINE DRAW ENHANCMT — When you press this softkey, a new set of soft-
keys appears, as shown here:

These keys allow you to specify the enhancements for line-draw characters only.
The current status of the enhancement (on or off) is displayed in the lower part of
the softkey on the screen. The EXIT softkey returns you to the layout softkeys.

24

Creating Forms
Create Form

LINE DRAW CHARACTRS — When you press this softkey, you gain access to
the line-draw-character softkeys, as shown here:

The line-draw characters provided are common to the HP 700/92. The MORE
CHARACTER softkey allows you to cycle through five sets of characters. The
ADVANCE softkey selects one of the four line-draw characters within the line-
draw softkeys. The selected character is displayed in the lower part of the line-
draw-enhancement softkeys at the bottom of the screen. The EXIT softkey returns
you to the layout softkey menu.

EXIT LAYOUT — Pressing this softkey returns you to the previous menu.

KEYBOARD — You use the keyboard to type in labels, descriptions, the name
(title) of the form, in between the fields, but not in the fields themselves. Remem-
ber that you must not use the “Delete line”, “Insert line”, “Delete char”, or the
“Insert char” keys to create or modify forms, since these keys might produce
unexpected results; your orders may be muddled and incoherent.

25

Creating Forms
Store the Form

Store the Form

When the STORE FORM softkey is pressed, you are asked for the name of the
form. You specify the form file name which may include a unit specifier or vol-
ume label. If a file by that name already exists, you are asked if the old file is to be
purged. If you answer no, you will be asked for a new file name. If you answer yes
and the file is unprotected, a purge will be performed and the new form will be
stored. If the file is protected, you cannot overwrite it.

After the form is stored, the keys become defined as follows:

If you wish to create another form, press RUN AGAIN. The keys become defined
as they were when the program was first run. These keys are shown earlier in this
section. The display enhancements are defined as you set them.

If you wish to exit the program, press EXIT.

26

Creating Forms
Summary of CFORM

Summary of CFORM

Now that you have read all the details on creating forms, here is a short overview.
The order of operation shown here is not mandatory.

1 Run “CFORM”.

2 Using the Enhancements softkeys, set the default field video enhancements.

3 Press CREATE NEW FORM or CREATE FROM FORM.

4 Create the image of the form.

5 Create input and output fields.

6 Set input, tab and output order.

7 Store the form.

27

3

Modifying Forms

The Modify form (MFORM) program allows you to modify a form without
destroying the program-link information (the number and length of the fields and
the order in which they are accessed by the program). The program-link informa-
tion cannot be changed with MFORM because any changes in the form would
require similar changes in every program that uses the form.

To run the MFORM program, start Eloquence and type the following:

28

Modifying Forms

RUN”MFORM”RETURN

NOTE: For the MODIFY FORM menu to appear, a VOLUME statement pointing to the directory
/opt/eloquence/share/prog must be included in the global configuration file eloq.config.
The sample global configuration file d.eloq.config contains such a statement (VOLUME
SYSTEM :Z2,7,0 /opt/eloquence/share/prog).

The current display enhancements (inverse video, half bright, underline) for input,
output and input/output fields are shown along with the definitions of the softkeys:

The default field enhancements can be changed by pressing one of the softkeys
marked ENHNCMNTS.

If the INPUT ENHNCMNTS softkey is pressed, the following menu is displayed:

29

Modifying Forms

Each softkey has the same definition and use as in the CFORM program:

SET FILL CHARACTER — Allows you to change the character which appears
in the field while MFORM is running. This character becomes a blank when the
form is stored.

INVERSE VIDEO, BLINKING, UNDERLINE and HALF BRGHT — Toggle on
and off. They set the default display enhancement. Note, however, that each field
does not have to use the default enhancement. The enhancements on an individual
field can be changed when the rest of the form image is changed.

When MODIFY FORM is pressed on the initial MFORM menu, you are asked for
the name of the form to be modified. The form will be displayed and the keys take
on a new definition.

MOVE FIELD — Moves the input or output fields to new locations. However, an
input/output field is moved as a whole. That is, the input or output portion of the
field cannot be moved separately.

TAB ORDER — Sets the order the cursor moves. The order is set in the same
manner as with CFORM.

Note that there is no key which allows you to create or delete fields or to change
the order of input from or output to fields. If you want to change these properties,
use the Create Form (CFORM) program.

30

Modifying Forms

LAYOUT FUNCTION — Used along with the keyboard to change the image of
the form (refer to page 23).

STORE FORM — Stores the modified form. The old file is purged and the new
form is stored with the same name as the old form. If the file is protected, you can-
not overwrite it. If the file cannot be found, you are asked for a new file name.

Once the form is stored, the new menu is:

To terminate the MFORM program, press the EXIT softkey.

To modify another form, press the RUN AGAIN softkey.

31

4

Interaction between Programs and Forms

32

Interaction between Programs and Forms
Form Link Information

Form Link Information

The linking information stored with the form consists of:

1 The number and location of input and output fields.

2 The order in which the input and output fields are accessed by the program.

The program that uses the form must be written so that the program-link is com-
plete. The program must read or write the correct number of input or output fields
in the correct order. If not, incorrect results will occur.

For example, assume the program uses the following form:

CUSTOMER NAME

PART NUMBER

PRICE ____________

QUANTITY

SUB TOTAL ____________

TAX ____________

SHIPPING CHARGE ____________

TOTAL ____________

The user fills in the inverse video fields and the program fills in the underlined
fields. Suppose the input order was 1) CUSTOMER NAME 2) PART NUMBER
3) QUANTITY. Further assume that the program was written to use the input
fields in the following order: 1) CUSTOMER NAME 2) QUANTITY 3)PART
NUMBER. You can see the problems that would result. Wrong parts would be
shipped, and the total charges would be wrong.

When you are writing a program that uses a form, but do not know the input and
output order of the fields, do the following:

1 Run CFORM.

2 Press CREATE FROM FORM.

3 Type in the name of the form the program will use.

4 Press INPUT ORDER, which will display the order of input.

5 Take note of the input order.

33

Interaction between Programs and Forms
Form Link Information

6 Press EXIT.

7 Press OUTPUT ORDER which will display the order of output.

8 Take note of the output order.

9 Press EXIT.

10 Terminate CFORM by pressing EXIT PROGRAM.

Do not alter the form and do not store it. While the form is displayed, you should
also note the length of each field.

34

Interaction between Programs and Forms
Input and Output Field Pointers

Input and Output Field Pointers

Two pointers, aninput field pointer and anoutput field pointer, keep track of
the current input and output fields. Each time an item is input to the program from
an input field, the input field pointer is incremented. The same occurs for the out-
put field pointer. The fields are accessed in the order specified when the form was
created (refer to page 21).

35

Interaction between Programs and Forms
Input and Output to the Form

Input and Output to the Form

The standard Eloquence input and output statements are described in the follow-
ing sub-sections. The descriptions given apply when used on an active form. An
active form is one that is displayed and has linking information in memory. Only
one form can be active at a time. All these statements are fully described in the
Eloquence Manual.

The INPUT Statement

INPUT [["prompt ",] input list]

This syntax first outputs the prompt (either a ? or the prompt specified in the syn-
tax) to the current output field and increments the output field pointer. The cursor
then moves to the currenttab field. When the user pressesRETURN, the contents
of the current field is input and the input field pointer is incremented. If more than
one input item is in the item list, the next prompt (if any) is output. The output
field pointer is incremented and the cursor moves to the next tab field. The input
field pointer is incremented when an item is input to the program.

For example, assume the following form is used. The field following NAME is an
input field. The field following SOCIAL SECURITY NUMBER is an output
field.

NAME

SOCIAL SECURITY NUMBER ____________

Before the form is used, the input field pointer (IF#) is 1 and the output field
pointer (OF#) is 1. The statement INPUT Name$ causes the form to appear as fol-
lows:

NAME

SOCIAL SECURITY NUMBER ? ____________

That is, the prompt (?) is output to the output field number 1 and the cursor
appears in input field number 1. IF #=1, OF#=2. The user types in a name and
pressesRETURN.

NAMEJOHN DOE

SOCIAL SECURITY NUMBER ? ____________

In this case, variable Name$ equals JOHN DOE, IF#=2 and OF#=2.

36

Interaction between Programs and Forms
Input and Output to the Form

If the program attempted to output the social security number, an error would
result because OF# is greater than the number of output fields.

If no parameters are specified in the INPUT statement, it will put the program in
the input state and wait forRETURN to be pressed. No prompt is output. The
input field pointer is not incremented. The INPUT statement should be followed
by an ENTER statement in order for the program to receive the data input.

For example, assume a program uses the following form:

NAME

SOCIAL SECURITY NUMBER ____________

Before the form is used, IF#=1 and OF#=1.

When INPUT is executed, the cursor appears and the program waits for the user to
enter a name and pressRETURN.

NAMEJOHN DOE

SOCIAL SECURITY NUMBER ____________

The IF#=1 and OF#=1, however, the program does not know the name that was
entered.

The ENTER Statement

 ENTER input list

ENTER inputs data from the display and continues program execution. The
ENTER statement inputs the value of the current input field to the input list. The
input field pointer is incremented. If there is more than one item in the input list,
the next value, now pointed to by the input field pointer is the input and the input
field pointer is again incremented.

For example, assume that this sequence is executed while the previous form is
active:

300 INPUT
310 ENTER Name$

Before INPUT is executed, IF#=1 and OF#=1.

NAMEJOHN DOE

SOCIAL SECURITY NUMBER ____________

37

Interaction between Programs and Forms
Input and Output to the Form

After ENTER is executed, IF#=2, OF#=1 and Name$=JOHN DOE. But if the
form appeared as follows immediately before the ENTER statement was executed
(the input field is blank):

NAME

SOCIAL SECURITY NUMBER ____________

Then after the ENTER statement is executed IF#=2, OF#=1 and Name$=” “
(equal number of blanks as in the field).

The DISPLAY and PRINT Statements

 DISP display list

 PRINT print list

Each statement outputs to the current output field and increments the output
pointer. If more than one item is in the list, the next item is output to the current
output field and the output field pointer is incremented.

For example, assume that after the name is input, the program outputs the social
security number. If an INPUT Name$ is used to input the name, the form looks as
follows:

NAMEJOHN DOE

SOCIAL SECURITY NUMBER ? ____________

Since IF#=2 and OF#=2, you cannot use the DISP statement here. But, if the
INPUT with no prompt is used, the form looks as follows:

NAMEJOHN DOE

SOCIAL SECURITY NUMBER ____________

Since IF#=2 and OF#=1, the program can use the DISP statement.

160 DISP “111-11-1111”

NAMEJOHN DOE

SOCIAL SECURITY NUMBER 111-11-111

Now IF#=2 and OF#=2.

The LINE DISPLAY Statement

 LDISP display list

38

Interaction between Programs and Forms
Input and Output to the Form

Moves the cursor to the first unprotected line following the form before outputting
the display list. The output field pointer is not incremented.

Using the same example form shown previously, assume a program does not have
a social security number for the name given, and wants the user to type in a num-
ber. The program can use LDISP.

300 LDISP "Please type in the social code."

NAMEJOHN DOE

SOCIAL SECURITY NUMBER ____________

Please type in the social security code. -

After LDISP is executed, IF#=2 and OF#=1.

The LINE ENTER Statement

 LENTER string variable

The LENTER statement immediately inputs the current line on the display and
continues program execution. If the cursor is in the form, an error occurs. Execu-
tion of LENTER does not affect the field pointers.

The LINE INPUT Statement

When executed, LINPUT moves the cursor to the first unprotected line following
the form and outputs a line-output prompt. The entire line is returned when
RETURN is pressed. The input field pointer is not incremented.

In the two previous examples, you saw how one statement, LDISP, would output
without affecting the form or form pointers and how another statement, LENTER,
would input. Instead of using these two statements, the program could use LIN-
PUT.

Assume the form and display looks as follows:

NAMEJOHN DOE

SOCIAL SECURITY NUMBER ____________

Now, IF#=2 and OF#=1.

LINPUT ” prompt”
;

,

string variable

39

Interaction between Programs and Forms
Input and Output to the Form

The program executes the following statement.

100 LINPUT ”please type in the social security code.”,Ssnum$

The form and display become:

NAMEJOHN DOE

SOCIAL SECURITY NUMBER ____________

Please type in the social security code. -

Because a comma followed the prompt in the statement, the cursor moves to the
next line. The user types in a number and pressesRETURN. The IF#=2 and
OF#=1.

If a semicolon (;) follows the LINPUT prompt, the cursor remains on the same
line as the prompt. Then whenRETURN is pressed, the entire line, including the
prompt, is assigned to Ssnum$.

40

Interaction between Programs and Forms
TAB and RETURN

TAB and RETURN

When the program is waiting for input, eitherTAB or RETURN can be used. The
TAB key moves the cursor from one input field to the next. It does not take the
program out of the waiting state. TheRETURN key does not tab through the
fields. It returns the program to the execution state. If the next statement is an
input statement, the cursor is displayed in the next tab field and it appears that
RETURN has tabbed to the next input field.

41

5

Controlling Forms

Seven statements and a function are available to control use of forms:

GET FORM Display a new form on the screen.

CLEAR FORM Erases the input and output fields and resets field pointers.

CURSOR Sets a value for the input and/or output field pointers.

TFNUM Returns the tab position of the cursor.

42

Controlling Forms

EXIT FORM Breaks the link between the form and the program.

DELETE FORM Erases the form from the display and breaks the program-form
link.

LOAD FORM Displays a form on the screen and loads information into mem-
ory about the fields of the form (for example, length, type, and
location).

STORE FORM Used to store a LOADed form.

NOTE: The form control statements (except for LOAD FORM and STORE FORM) are available
in the developmentand run-time versions of Eloquence. LOAD FORM and STORE
FORM areonly available in the development version of Eloquence.

43

Controlling Forms
The GET FORM Statement

The GET FORM Statement

The GET FORM statement displays a new form and loads the program-form link-
ing information into memory. The syntax is:

 GET FORM "form name[volume]"

Form name is the name of the form. Volume spec is a volume label or unit speci-
fier.

When a form is displayed and the linking information is loaded, the form is active.
To ensure that only one form is active at a time, GET FORM performs an EXIT
FORM before the new form is activated.

The program uses GET FORM initially to display a form to be used for input and
output or to change from one form to another. Once a form is activated, all item
input and output is done through that form. (Item input and output is done with the
INPUT, ENTER, DISP and PRINT statements.) Line output and input (LDISP,
LENTER and PRINT) is done outside the form image and does not affect the
form pointers.

44

Controlling Forms
The CLEAR FORM Statement

The CLEAR FORM Statement

The CLEAR FORM statement clears the input and output fields of the current
form. Use CLEAR FORM to reuse a form for further input and output. The syntax
is:

 CLEAR FORM

When CLEAR FORM is used, the form on the display remains as it is; only the
input and output fields are erased.

Execution of this statement resets the field pointers to the first input field and first
output field of the form. The cursor is placed in the upper-left corner of the form.
The form remains active and the link between program and form is not altered.

45

Controlling Forms
The CURSOR Statement

The CURSOR Statement

Use the CURSOR statement whenever an input or output operation is wanted in a
particular field that is out of the order specified when the form was created.

The CURSOR statement can be used to set values for the input and output field
pointers via the IF# (Input Field number) and OF# (Output Field number) param-
eters. The cursor can be set to a particular input field with the CF# parameter. Cur-
sor parameters are introduced in the Output Operations chapter in theEloquence
Manual. However, when a form is active, some additional parameters can be used.
The general syntax of these parameters is:

 CURSOR ,...

The IF# parameter sets the input field pointer to the value specified in the numeric
expression following IF#. When the next input operation is executed, the cursor is
moved to the first character of that field. OF# sets the output field pointer to the
value specified in the numeric expression following OF#. When the next output
operation is executed, the cursor moves to that output field.

For example, to set the input field pointer to input field number 20 and the output
field pointer to output field number 5:

CURSOR IF#20, OF#5

The CF# parameter is normally used with the IF# parameter. Using CF# causes
the cursor to move to the specified input field rather than to the field specified in
the IF# expression.

For example, assume the program determines that a given input is incorrect and
that the user must re-enter the information in that field. The IF# parameter could
be used to set the input field pointer and the cursor to the incorrect field. However,
the user may useTAB to move the cursor and correct another field. The program
would not receive this change. A better way is for the program to set the IF# equal

,IF # numeric expression

,CF# numeric expression

,OF# numeric expression

46

Controlling Forms
The CURSOR Statement

to one and CF# to the incorrect field. Then the cursor would move to the incorrect
field and the input field number is one. After the user enters any information, the
program rereads all the input fields.

47

Controlling Forms
TFNUM Function

TFNUM Function

The function TFNUM returns the tab field number of the current tab position. It
returns zero if the form is not active, or before the first position. A program can
use this to test if the user has filled in all the fields of the form. For example:

10 INPUT
20 IF TFNUM%<4 THEN 10
30 ENTER A(1), A(2), A(3), A(4)

The user pressesTAB to tab to each field. PressingTAB in the last field will cause
line 30 to be executed.

48

Controlling Forms
The EXIT FORM Statement

The EXIT FORM Statement

The EXIT FORM statement breaks the link between the active form and the pro-
gram. The syntax is:

 EXIT FORM

The cursor is moved to the first character of the first line after the form. The form
is no longer active.

After EXIT FORM is executed, the form is still displayed, but further input and
output operations do not use it. The lines of the form are unprotected.

49

Controlling Forms
The DELETE FORM Statement

The DELETE FORM Statement

The DELETE FORM statement breaks the link between the active form and the
program. In addition, it erases the form from the display. The syntax is:

 DELETE FORM

50

Controlling Forms
The LOAD FORM Statement

The LOAD FORM Statement

The LOAD FORM statement is only available in the development version of Elo-
quence. This statement displays a form on the screen and loads information into
memory about the fields of the form (for example, length, type, and location).
Syntax is as follows:

 LOAD FORM "form name[volume spec]", array

Replaceform name with the name of the form. Thevolume spec parameter is
optional. If used, replace it with the volume label or unit specifier. Replacearray
with an integer array name. This array contains information about the fields of the
form. The minimum array size (number of elements in the array) is equal to 7 + 2
\ast number of input fields + number of output fields. So, if you have 50 input
fields and 70 output fields, the array associated with the form must allow for at
least 177 elements.

LOAD FORM is useful for automatic forms generation or modification. For
example, suppose you have a database that contains a record named CUSTOMER
NUMBER, and it has a field length of 16. Suppose you change the database
schema text file so this field is 20 characters long. The screens that contain the
CUSTOMER NUMBER record must be changed. This can be done using a pro-
gram containing the LOAD FORM and STORE FORM statements. The general
flow of the program would be (1) LOAD FORM, (2) search for CUSTOMER
NUMBER, (3) change field length to 20, (4) STORE FORM.

Error Messages

Listed below are the error numbers that could occur when the LOAD FORM
statement is executed. Next to each number is an explanation.

ERROR 56 - File or directory not found or no read permission.

ERROR 861 - Improper number of elements. The array does not have enough ele-
ments to hold the data from the LOAD FORM statement.

ERROR 862 - Improper array type. The array specified must be an integer array.

51

Controlling Forms
The STORE FORM Statement

The STORE FORM Statement

The STORE FORM statement is only available in the development version of
Eloquence. This statement stores a form that has been loaded using the LOAD
FORM statement. Syntax is as follows:

 STORE FORM "form name[volume spec]", array

Replaceform name with the name of the form. The form name can be up to nine
characters long; the extension .FORM is automatically appended to the form
name. Thevolume spec parameter is optional. If used, replace it with the volume
label or unit specifier. Replacearray with an integer array name. This array will
contain the information about the fields of the form. The minimum array size
(number of elements in the array) is equal to 7 + 2 \ast number of input fields +
number of output fields. So, if you have 50 input fields and 70 output fields, the
array associated with the form must allow for at least 177 elements.

A form can be stored back to its LOADed name or to a new form name using the
STORE FORM command.

It is possible to store default values in the fields of a form. To do so, load the form
(LOAD FORM), type information into the desired fields, and store the form
(STORE FORM). Now when GET FORM is executed the information previously
typed in and stored appears in the form on the screen.

Error Messages

The error messages mentioned under page 50 also apply to STORE FORM.
However, there is one additional message unique to STORE FORM. It is as fol-
lows:

ERROR 863 - Inconsistant information given.

This message occurs if you update the forms image without updating the array
elements or vice versa.

52

Controlling Forms
Example Program

Example Program

When this program is run, it displays a form and asks the user to fill it in. When
ENTER is pressed, the program checks that the zip code, area code and phone
fields have been filled in with numbers. If not, the program resets the cursor and
asks that the field be re-entered. The program uses a form that looks as follows:

10 ! The form is stored in file “NEWCUS”.
20 ! The input fields are name, address and phone.
30 ! The output field is account.
40 ! The customer information is stored in a file called “CUSTMR”
50 ! The first record contains the next account number to be used.
60 !
70 ! Begin program
80 !
90 OPTION BASE 1
100 DIM A$(10)[20],B$[80],C$[200]
110 ASSIGN #1 TO “CUSTMR,FILES”
120 !
130 GET FORM “NEWCUS,FILES”
140 !
150 Input: INPUT
160 IF TFNUM%<>9 THEN GOTO 150
170 ENTER A$(*)
180 !
190 A: IF (A$(7)>”99999”) OR (A$(7)%<”00000”) THEN GOTO Zip
200 B: IF (A$(8)>”999”) OR (A$(8)%<”000”) THEN GOTO Area
210 C: IF (A$(9)>”9999999”) OR (A$(9)%<”0000000”) THEN GOTO Phone
220 !
230 READ #1,1;Acc
240 PRINT Acc
250 B=Acc+1

53

Controlling Forms
Example Program

260 PRINT #1,1;B
270 A$(10)=VAL$(Acc)
280 !
290 FOR I=1 TO 10
300 C$=C$+A$(I)
310 NEXT I
320 !
330 PRINT #1,B;C$
340 LDISP “DO YOU WANT TO ADD ANOTHER CUSTOMER?”
350 LINPUT B$
360 !
370 IF (B$[1]%<”Y”) OR (B$[1]>”Y”) THEN GOTO End
380 !
390 C$=” “
400 CLEAR FORM
410 GOTO Input
420 !
430 Zip: LDISP “YOU HAVE ENTERED AN INCORRECT ZIP CODE. PLEASE RE-
ENTER.”
440 CURSOR IF#1,CF#7
450 GOTO Input
480 !
490 Area: LDISP “YOU HAVE ENTERED AN INCORRECT AREA CODE. PLEASE RE-
ENTER.”
500 CURSOR IF#1,CF#8
510 GOTO Input
540 !
550 Phone: LDISP “YOU HAVE ENTERED AN INCORRECT PHONE NUMBER.”
560 LDISP “PLEASE RE-ENTER”
570 CURSOR IF#1,CF#9
580 GOTO Input
610 !
620 ! End of program
630 !
640 End: EXIT FORM
650 ASSIGN #1 TO *
660 END

54

Controlling Forms
Example Program

55

6

Printing Forms

To print a form, use the PFORM (print form) program. PFORM is supplied with
the development version of Eloquence. To run PFORM, start Eloquence and type
the following:

RUN ”PFORM” RETURN

56

Printing Forms

NOTE: For the PRINT FORM menu to appear, a VOLUME statement pointing to the directory
/opt/eloquence/share/prog must be included in the global configuration file eloq.config.
The sample global configuration file d.eloq.config contains such a statement (VOLUME
SYSTEM :Z2,7,0 /opt/eloquence/share/prog).

The initial PFORM menu asks for the name of the form to be printed:

To print copies of one form, enter its file name and optionally its volume. Then
skip the next section and read page 60 . If copies of more than one form are to be
made, press the MULTIPLE FORMS softkey.

57

Printing Forms
Multiple Forms

Multiple Forms

When MULTIPLE FORMS is pressed, the following menu is displayed to allow
you to enter one or more form file names:

You may enter each file name and volume or press CATALOG FORMS to display
selected file names automatically.

CLEAR FORM — clears the form for new entries.

CATALOG FORMS — asks for a file key (first letter(s) of the file name) and/or a
volume.

When the CATALOG FORMS softkey is pressed, the following screen is dis-
played:

If only a volume is specified, either a comma precedes the volume name or a
colon precedes a unit specifier. A blank volume indicates the current MSI.

58

Printing Forms
Multiple Forms

All form files with the correct file key and on the specified volume are displayed,
as shown by the following screen:

You may use the edit keys (CLEAR, INSERT, etc.) to add or delete files from the
list.

59

Printing Forms
Multiple Forms

PROCESS DATA — when the list is complete press this softkey. A new menu is
displayed for printer selection.

EXIT PFORM — exits the program without printing any forms.

60

Printing Forms
Printer Selection

Printer Selection

After one or more form names are entered, PFORM allows you to choose a
printer.

Enter the printer number. Note that forms cannot be printed on the terminal. (To
view the form on the terminal use MFORM.)

ACCEPT DEFAULTS — immediately prints one copy of the form using default
fill characters but without headers. The Without Order version is printed (refer to
page 64). If you run PFORM and change the defaults then return to this menu, the
current defaults are those you set. Exiting the program resets the defaults.

RESTART PFORM — returns to the multiple forms menu.

EXIT PFORM — exits the program without printing any forms.

When you have selected the printer, the following screen appears to request the
desired number of lines per page for the printout:

61

Printing Forms
Printer Selection

The default number of lines per page is 66. If you do not enter another value, this
default value will be used by PFORM.

When you have selected the number of lines per page, you may also enter a mes-
sage to be printed along with the form at the top of every page. The following
screen will appear to request the entering of the optional message:

62

Printing Forms
Display Enhancements and Fill Characters

Display Enhancements and Fill Characters

When the form is displayed on the terminal, special characters such as the line
drawing set are used to enhance the form. Most printers cannot print these charac-
ters, so an alternate character may be selected. If a character other than blank is
selected, that character replaces all special characters. (A special character is any
character which is not on the local language keyboard.) If a blank is specified for
special characters, the printer will attempt to print all special characters.

You may also select a character to be used as a fill character for the different types
of fields. If a blank is entered, blanks are printed.

After the printer and message are selected, the following menu allows these char-
acter selections:

The default values for all fill characters are shown on the menu.

INPUT FILL — changes the default printer input field fill character.

OUTPUT FILL — changes the default output field fill character.

IN/OUT FILL — changes the default input/output field fill character.

SPECIAL FILL — changes the default character which appears anywhere on the
form (except in fields) where a non-printable character appears.

63

Printing Forms
Display Enhancements and Fill Characters

HEADER OFF — enters or modifies a two-line header to be printed above each
form. The softkey definition changes to HEADER ON. If pressed a second time, it
returns to its initial definition.

SOFTKEYS OFF — enters softkey definitions to be printed below each form.

CONTINUE — selects the version of the forms to be printed.

EXIT PFORM — exits the program without printing any forms.

64

Printing Forms
Version Selection

Version Selection

After the fill options are selected, pressing CONTINUE displays the following
screen:

Select the version of the form to be printed.

DIRECT COPY — prints a copy as it appears on the terminal. Any enhancements
which cannot be printed are left out. No additional enhancements or fill characters
are added.

WITHOUT ORDER — prints a copy using any fill characters or special character
specified. This is the default copy which is printed if ACCEPT DEFAULTS is
pressed.

INPUT ORDER — the fill character and the special character specified are used.
A number is placed in each input field to indicate the input order. If the number
has more digits than the field length, no number is placed in the field.

TAB ORDER — the fill characters and the special characters specified are used. A
number is placed in each input field to indicate the tab order. If the number has
more digits than the field length, no number is placed in the field.

OUTPUT ORDER — the fill characters and the special character specified are
used. A number is placed in each output field to indicate the output order. If the
number has more digits than the field length, no number is placed in the field.

65

Printing Forms
Version Selection

FIELD LENGTH — the fill characters and the special character specified are
used. A number is placed in each field to indicate its length.

CONTINUE — causes printing to begin.

EXIT PFORM — exits the program without printing any forms.

66

Printing Forms
Printing Forms

Printing Forms

Printing begins by pressing CONTINUE on the version selection menu. The
forms are printed in the order specified. All selected versions of one form are
printed before the next form is printed. While the forms are being printed the soft-
keys are defined as follows:

RESTART PFORM — returns to the multiple forms menu. All forms which have
not been printed are listed.

EXIT PFORM — terminates PFORM.

After the forms are printed, the initial menu is displayed. You may enter another
form name or exit PFORM by pressing EXIT PFORM.

Errors If an error (such as the form is not found) occurs during printing, the form
name is displayed along with the error message. You may enter a correction (such
as a different volume name) or press the softkey labeled SKIP FORM. Error mes-
sages are described in page 67 .

67

A

Error Messages

68

Error Messages
CFORM and MFORM Error Messages

CFORM and MFORM Error Messages

The error messages that may occur when using the CFORM (create form) or
MFORM (modify form) programs are listed below.

VOLUME (DIRECTORY) IS WRITE-PROTECTED — You have tried to
write to a volume that is protected. Specify another volume for the write opera-
tion, or change the access rights for the directory associated with the volume to
allow write access.

FATAL ERROR xxx ENCOUNTERED xxxx — An internal error occurred in a
forms program. Note this error and report it to your service representative.

FIELD BEYOND COLUMN 255 — A field cannot begin after column 255.

FIELD DELETED ILLEGALLY — This error occurs during MFORM if you
delete a field with the editing keys. This error causes the program to terminate.
There is no recovery.

FIELD MOVED OR DELETED — This error occurs during CFORM if the
system cannot find the field you are trying to move during the move field opera-
tion.

FIELD WILL NOT FIT ON LINE — You are trying to move a field to a posi-
tion where the end of the field will be off the screen. Pick a new location and
move the field there.

FILE “filename”ALREADY EXISTS — You have tried to store a form into a
file that already exists. You can purge the old file and store the form, or store the
form in another file or with the same name on a different volume. This error only
occurs with the CFORM program.

FORMS LIMITED TO 255 LINES — The maximum size of a form image is
255 lines. If a larger form is necessary, use two forms.

ILLEGAL FIELD OVERLAP — You are trying to move a field to a position
where it would overlap another field. You must pick a new location to which to
move the field.

ILLEGAL POSITION FOR IN/OUT FIELD — You are trying to move an
input/output field to a location where there would be no non-field character before
and after the input/output field. Pick a new location for the field.

IMPROPER FILE NAME — The name you specified is an illegal file name.

69

Error Messages
CFORM and MFORM Error Messages

IMPROPER FILL CHARACTER ENTERED — The system reserves some
characters for its use (for example, \leftarrow, \uparrow, etc.). You cannot
use these for fill characters.

IMPROPER PROGRAM ENTRY — You tried to enter a forms program at its
entry point; CFRM, MFRM; and the program could not be found.

IMPROPER VOLUME LABEL OR UNIT SPECIFIER — You specified a
volume label or unit specifier with illegal characters. A volume name is a maxi-
mum of eight characters. A unit specifier has a syntax of:

 :letter select code, device address, unit number

This syntax is completely described in theEloquence Manual.

INVALID FIELD NUMBER — This error may occur during an ordering opera-
tion when a field contains an invalid number (e.g., 1.1.1). The cursor will go to the
first offending field. Enter a valid number. Check that all other fields contain valid
numbers and try the operation again.

NO FILE “filename”EXISTS — The system cannot find the file. If you used a
unit specifier, try again with the volume label. Otherwise, exit the program and
execute CAT, which lists the files currently stored.

OVERLAY FILE REVISION LEVEL CONFLICT — An earlier version of
CFRM or MFRM was loaded during an overlay operation.

POSITION WOULD JOIN TWO FIELDS — You are trying to move a field to
a position where there would be no non-input or output field character between it
and a like field. Two input fields must have at least one non-input field character
between them, similarly for output fields.

PROGRAM FILE REVISION LEVEL CONFLICT — An earlier version of a
forms program was loaded while the program was running.

SPECIFIED VOLUME NOT FOUND — The volume specifier you gave does
not match any of the available volume specifiers. Check that you entered the vol-
ume specifier correctly.

TOO MANY INPUT FIELDS — You have tried to create more than 200 input
fields. If more fields are needed, use two forms.

TOO MANY OUTPUT FIELDS — You have tried to create more than 200 out-
put fields. If more fields are needed, use two forms.

70

Error Messages
PFORM Error Messages

PFORM Error Messages

These error messages may occur when using PFORM:

A NUMBER −2 through 7 or 10 through 99 IS REQUIRED — a device
address outside the acceptable range was entered.

BLANK INPUT NOT ALLOWED — a file name or device address must be
entered.

CANNOT CONTINUE UNTIL AT LEAST ONE VERSION IS SELECTED
— select at least one version of the form to be printed by pressing the appropriate
softkey. Then press CONTINUE.

ENHANCEMENTS/SPECIAL CHARACTERS NOT ALLOWED — video
enhancements and special characters cannot be output by most printers. Re-enter
using standard characters.

FATAL ERROR xxx ENCOUNTERED xxx — an internal error occurred in the
PFORM program. Note this error and report it to your service representative.

FILE NAME IS REQUIRED — a file name must accompany the volume speci-
fier. To enter all forms on a volume, use the multiple forms menu.

FILE NAME TOO LONG — the file name must be nine characters or less.

FILE NOT FOUND — the file was not found on the volume specified. If no vol-
ume was specified, the current mass storage volume was used.

GIVEN (OR DEFAULT) VOLUME NOT MOUNTED — a directory with the
specified label was not found.

ILLEGAL PROGRAM ENTRY — attempt to enter the PFORM program at its
entry point, PFRM, and the program could not be found.

IMPROPER VOLUME NAME — a volume name has a maximum of eight
characters.

PFORM/PFRM REVISION NUMBER CONFLICT — PFORM and PFRM
do not have the same revision number.

PRINTER IS MISSING, OR WRONG TYPE, DOWN, OR OFFLINE —
check the status of the printer. RESET and switch the printer ON-LINE. Then re-
enter the printer device address.

VOLUME NOT FOUND — the volume name specified is not found.

71

Error Messages
Program Error Messages

Program Error Messages

Errors which may occur during execution of a program that uses a form are listed
below.

290 NOT ALLOWED WHEN FORM IS ACTIVE — The opera-
tion the program is trying to perform could destroy the integrity
of the form (i.e., protect lines, unprotected lines, etc.).

291 NOT ALLOWED WITHIN FORM IMAGE — The program is
trying to modify the form (i.e., creating unprotected lines
within the form).

292 ATTEMPT TO INPUT AFTER LAST FIELD OF FORM —
The input field pointer has a value greater than the number of
the input fields. The program can clear the form, use the CUR-
SOR statement to reset the value of the input field pointer, or a
line input statement could be used.

293 ATTEMPT TO OUTPUT AFTER LAST FIELD OF FORM —
The output field pointer has a value greater than the number of
output fields. The program can clear the form, reset the output
field pointer with the CURSOR statement, or use a line output
statement.

294 NOT ALLOWED UNLESS FORM IS ACTIVE — The pro-
gram is trying to execute a statement that operates on a form
(i.e., CURSOR IF#, CF#, or OF#) and no form is currently
active.

861 IMPROPER NUMBER OF ELEMENTS — The array does not
have enough elements to hold the data from the LOAD FORM
statement.

862 IMPROPER ARRAY TYPE — The array specified in a LOAD
FORM or STORE FORM statement must be aninteger array.

863 INCONSISTENT INFORMATION GIVEN — This message is
associated with the STORE FORM statement. It indicates that
the form was modified, but the necessary elements in the array
were not or vice versa.

72

Error Messages
Program Error Messages

73

Index

