
1

Eloquence

Eloquence DBMS Manual

B.06.32
Edition E1202

© Copyright 2002 Marxmeier Software AG.

2

Legal Notices

Legal Notices

The information contained in this document is subject to change without notice.

MARXMEIER SOFTWARE AG MAKES NO WARRANTY OF ANY KIND
WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. Marxmeier Software AG shall not be liable for
errors contained herein or for incidental or consequential damages in connection
with the furnishing, performance or use of this material.

This document contains proprietary information which is protected by copyright.
All rights reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as
set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013. Rights for non-DOD U.S. Government
Departments and Agencies are as set forth in FAR 52.227-19 (c) (1,2).

Acknowledgments

© Copyright Marxmeier Software AG 2002. All Rights Reserved.

Marxmeier Software AG
Besenbruchstrasse 9
42285 Wuppertal
Germany

Eloquence is a trademark of Marxmeier Software AG in the US and other coun-
tries.

© Copyright Hewlett-Packard Company 1990-2002. All Rights Reserved.

This software and documentation are based in part on HP software and documen-
tation under license from Hewlett-Packard Company. HP is a trademark of
Hewlett-Packard Company.

3

Printing History

Printing History

The manual printing date indicates its current edition. The printing date will change
when a new edition is printed. Minor changes may be made at reprint without
changing the printing date. New editions are complete revisions of the manual.The
dates on the title page change only when a new edition or a new update is pub-
lished.

Manual updates may be issued between editions to correct errors or document
product changes. Manuals that are published on the Eloquence website (www.hp-
eloquence.com/doc) may be updated more often, please visit this website periodi-
cally for the most recent versions. To ensure that you receive the updated or new
editions, you should also subscribe to the appropriate product support service.

The software code printed alongside the date indicates the version level of the soft-
ware product at the time the manual or update was issued. Many product updates
and fixes do not require manual changes and, conversely, manual corrections may
be done without accompanying product changes. Therefore, do not expect a one to
one correspondence between product updates and manual updates.

Printed in the Federal Republic of Germany.

First Edition Apr 1990 A.01.00

Second Edition July 1991 A.03.00

Third Edition February 1992 A.03.10

Fourth Edition August 1997 A.06.00

Fifth Edition October 1997 A.06.00

Sixth Edition (E1202) December 2002 B.06.32

4

Printing History

Contents

5

Table of Contents

1 Things to Know Before You Start 11

Inside This Manual . 12

Conventions . 13

Related User Documentation 14

2 Introduction . 15

What is Eloquence DBMS? . 16

The Eloquence A.06.00 Database 18

Eloquence DBMS Organization 23

Data Access . 27

Manual vs. Automatic Master Data Sets 32

Database security . 33

Getting started with the Eloquence A.06.00 database 37

3 Database Definition . 41

Introduction . 42

Database Definition Language 43

Schema Statements . 52

Contents

6

The Schema Program . 55

4 Database Manipulation . 59

Introduction . 60

The DBLOGON Statement . 62

The DBOPEN Statement . 63

The DBCLOSE Statement . 67

The DBGET Statement . 69

The DBUPDATE Statement . 72

The DBPUT Statement . 73

The DBDELETE Statement . 75

The DBFIND Statement . 77

The DBINFO Statement . 83

The DBEXPLAIN$ function 90

Transactions . 91

The DBLOCK Statement . 94

The DBUNLOCK Statement 97

Advanced Access Statements 99

The PREDICATE Statement 103

Contents

7

5 Database Utilities . 105

Introduction . 106

The dbvolcreate utility . 107

The dbvolextend utility . 108

The dbvolchange utility . 109

The dblogreset utility . 110

The DBUTIL utility . 111

DBCREATE, DBERASE and DBPURGE commands 123

The dbexport and dbimport Programs 132

6 Example Operations . 141

Database Design . 142

Database Definition and Creation 149

Eloquence DBMS Programming Examples 151

Database Locking . 170

A Pack Statements 179

Introduction . 180

B DBML Syntax 185

Schema Definition . 186

Contents

8

Data Set Definition Syntax . 187

DBML Statements and Advanced Access 189

Utility Statements . 194

Obsolete utility statements . 195

C Error Messages 197

Eloquence DBMS Status Errors 198

Pack and Eloquence DBMS Error Codes 203

dbimport Error Messages . 205

ISAM Errors . 208

D Eloquence Library 211

Compilation and Linking . 212

ELOQLIB functions . 213

The INIT Function . 214

The EXIT Function . 215

The ERROR Function . 216

The LOGON Function . 217

The OPEN Function . 218

The CLOSE Function . 221

Contents

9

The DELETE Function . 223

The FIND Function . 225

The GET Function . 231

The INFO Function . 235

The LOCK Function . 242

LOCK DESCRIPTOR FORMAT 245

The UNLOCK Function . 246

The PUT Function . 248

The UPDATE Function . 250

The BEGIN Function . 252

The COMMIT Function . 254

The ROLLBACK Function 256

ERROR HANDLING . 258

SAMPLE PROGRAM . 259

Sample Program . 261

E Obsolete Database Utilities 267

Introduction . 268

DBPATCH utility . 270

Database Restructuring . 271

Contents

10

The DBUTIL program . 273

The dbmods Program . 296

The DBPASS Statement . 304

The DBMAINT Statement . 305

The READ DBPASSWORD Statement 306

The WRITE DBPASSWORD Statement 307

11

1

Things to Know Before You Start

12

Things to Know Before You Start
Inside This Manual

Inside This Manual

This manual contains information on using the Eloquence database management
system (DBMS). The manual is organized as follows:

Chapter 1 ”Things to Know Before You Start” is an introduction to the
use of this manual.

Chapter 2 ”Introduction” provides a prelude to database concepts and the
way the Eloquence DBMS is organized.

Chapter 3 ”Database Definition” describes how to define a database.

Chapter 4 ”Database Manipulation” lists and describes the database state-
ments used to access and manipulate database information.

Chapter 5 ”Database Utilities” explains the database utilities used to
maintain the database included in A.06 and later.

Chapter 6 ”Example Operations” shows example database operations and
sample programs.

Appendix A ”Pack Statements” discusses transferring string and numeric
data to and from a string variable by using Pack Statements.

Appendix B ”DBML Syntax” lists the syntax for the database manipulation
statements.

Appendix C ”Error Messages” lists Eloquence DBMS error messages and
gives a brief explanation after each message.

Appendix D ”Eloquence Library” lists and decribes the functions available
in the library which users can integrate into their own pro-
grams.

Appendix E ”Obsolete Database Utilities” provides documentation for data-
base utilities which are no longer used by the current Eloquence
revision. (Since Eloquence A.05.xx will be in use for some
time but did not include online documentation we thought it
would be helpful to include the documentation here.)

13

Things to Know Before You Start
Conventions

Conventions

The following conventions are used throughout this manual:

• Bold type is used when a new term is introduced.

• Computer font indicates text to be input exactly as shown or text that is output from
the system.

• Italic type is used for emphasis and titles of publications. It is also used to indicate pa-
rameters that are user defined.

• KEYCAP represents a key on the keyboard.

• represents the softkeys displayed on the computer screen.

• … indicates that the previous variable can be repeated.

• [] indicates that information inside the brackets is optional. If there are brackets within
brackets, the information within the inner bracket may only be specified if the informa-
tion in the outer bracket is specified. Information may also be stacked in brackets. For
example, A or B or neither may be selected when the following is shown:

• { } indicates that one of the choices stacked within the braces must be selected. For ex-
ample, A or B or C must be selected when the following is shown:

NOTE: Notes contain important information and are set off from the text.

shading

A

B

A

B

C

14

Things to Know Before You Start
Related User Documentation

Related User Documentation

Additional information is included in the following manuals:

TheEloquence Manual contains detailed information on the commands and state-
ments available in the Eloquence environment.

NOTE: This manual assumes the reader has some familiarity with the Eloquence commands and
statements discussed in theEloquence Manual.

15

2

Introduction

This manual describes the Eloquence database management system (DBMS) soft-
ware.

16

Introduction
What is Eloquence DBMS?

What is Eloquence DBMS?

Eloquence DBMS is a set of statements and utilities that operate on the Eloquence
database. Adatabase is a group of logically related files which contain all the
data necessary to satisfy a user’s information needs. A database also contains
structural information describing how the various data files are related. Relation-
ships that link data within a database allow access to both related data and data
across files.

An example database system is shown in the following diagram. It performs many
of the same tasks as standard file-processing systems. However, its files have been
integrated into a database that is processed by application programs. As shown in
the example, accounts receivable, order entry, and purchasing systems perform
their usual file-processing function, but they call upon the Eloquence database
management system to access the database. More importantly, Eloquence DBMS
can process the data as an integrated whole. Since the files have been created by
the same system, all the data is compatible. This allows for integrated processing,
which is the ability to index across the various files to extract related information.

For example, inventory data can be logically “tied to” several sales orders to rep-
resent the relationship between items in the inventory file and the sale of those
items in the invoice file. This relationship can provide management with informa-
tion such as the source of sales by salesman, region, customer and product type.

17

Introduction
What is Eloquence DBMS?

Figure 1 A Database System

INVOICE
DATA

INVENTORY

DATA

CUSTOMER
DATA

DATABASE

ELOQUENCE

PROCESSING

SYSTEM

ACCOUNTS REC.
SYSTEM

PURCHASING
SYSTEM

ORDER ENTRY
SYSTEM

REPORTS

REPORTS

REPORTS

18

Introduction
The Eloquence A.06.00 Database

The Eloquence A.06.00 Database

This chapter describes the operation and architecture of the Eloquence database.

NOTE: The new database isnot binary compatible to the previous implementation and the database
must be transferred by using dbexport/dbimport.

Introduction

When the original Eloquence database was implemented, it was intended as a
compatible replacement of the HP260 Image database. With Eloquence release
A.03.xx, index operations were added.

Since then, the amount of data stored in Eloquence databases has grown tremen-
dously. While a typical database in 1990 had a size of less then 100 MB, Elquence
databases today reach sizes of 4 GB and above. In addition Eloquence databases
are used in a network environment.

It became evident, that the previous Eloquence database architecture would not
allow to cope with the request for operating on ever increasing amounts of online
data. Therefore Eloquence A.06.00 includes a new database system.

The main objectives for the new implementation were:

• Compatibility: The new database is transparent to existing Eloquence programs.

• Improved database security. This includes both, access control and protection against
corruption due to program or system failures.

• Better performance for large databases.

• Transaction logging and recovery

• Databases are kept in a database environment which is built of volumes. There are no
longer hundreds of database related files.

• A portable and extensible architecture

The new Eloquence database can be used as a building brick to efficiently realize
relational and hierarchical database strcutures. In the sections below, we provide
an overview on the Eloquence database architecture.

19

Introduction
The Eloquence A.06.00 Database

Database architecture

In former Eloquence releases, the database was implemented as a shared process.
Each Eloquence process contained a common part of the database engine, while
some central shared memory was used to coordinate database activities system
wide.

The new Eloquence database now utilizes one process per database environment.
This process controls and performs all database operations. This provides better
performance, since less system resources are used (for the client processes), less
inter-process synchronization is required and the database server process can use
dedicated system resources allocated for it.

The new Eloquence database uses a layered architecture. The Diagram below
shows the major database layers:

| Image | Catalog | (SQL) | API Layer

| FixRec | VarRec | BTree | . . . | Record Layer

| Node Management | Node Layer

| Buffer Cache | Buffer Layer

| Volume Management | Storage Layer

The storage layer

All databases are maintained in a database environment. A database environment
consists of a group of related files (called database volumes) which actually con-
tain the data and a configuration file. The storage layer is responsible for volume
management and block allocation.

| Storage Layer |
 | | |
------------- ------------- -------------
Volume #1		Volume #2		Volume #3
/mnt1/vol		/mnt2/vol		/mnt3/vol
------------- ------------- -------------

Each database volume contains a volume header, which describes the volume and
its properties. It also has a block allocation map, which is used to locate available
blocks in this volume. Below that are data blocks which can be allocated in
groups for the various database objects.

20

Introduction
The Eloquence A.06.00 Database

A database environment can have up to 255 volumes, each volume up to 128 GB
(this depends on the underlying operating system). A database volume can either
be allocated with a fixed size or can grow by a specified amount when additional
space is required. For example, you can have a volume which starts with a size of
100 MB, extends by 16 MB until it reaches a total size of 200 MB.

The Buffer Cache

The buffer cache is a memory area consisting of 8K blocks ("pages"). Each page
is associated with a specific location on disc. A group of pages can be linked to a
cluster to hold a consecutive disc area. This allows to read or write a group of
related disc blocks in one operation.

Each buffer cache page consists of a buffer header, holding status and link infor-
mation for this page and the buffer memory, which holds the data from/for a disk
location.

 Buffer Header Buffer Memory
 ----------- ------------------
 | Block | | Contents of |
 | #3 |----->| Block #3 |
 | | | |
 | | | |
 ----------- ------------------
 ^
 Database volume |

 | Block | Block | Block | Block | ... | Block |
 | #1 | #2 | #3 | #4 | | #n |

The buffer memory is either allocated on server startup. Modified pages are writ-
ten back to the disc, when either additional buffer space is required or due to data-
base consistency requirements.

Node Management

A Database Node is a generic database object. Database resources are allocated to
database nodes. Each node has an associated list of blocks allocated to it, besides
that, it is free to do what it wants. A database node is like a file. You know its
dimensions, but you don't know what it contains, unless you have a look inside.

 ------------- --------------
 | Node |-->| Allocated |
 | | | Blocks |
 ------------- --------------

Nodes are allocated dynamically, unlimited in number.

21

Introduction
The Eloquence A.06.00 Database

Record Layer

The Record layer implements different logical node types. It is responsible for the
maintenance of logical records and is a building brick for the high level APIs
(such as Image).

The following node types are currently available:

Fixed records
(FixRec) Fixed records are identified by a constant record address (a 32 bit

number) which is used to identify the block address in the volume
which actually contains the data. Fixed records are allocated in clus-
ters of up to 64k to minimize disc space overhead.

------------ -------------- ----------------
| Node |-->| Block list |--->| Allocated |
------------ -------------- | blocks |
 -------------- | |
 | Free list | | |
 -------------- ----------------

Fixed records use a list of allocated Blocks to map a record address to
a data block (actually a cluster) in a database volume. The Free List is
used to keep track of available record numbers.

BTree This is an index. It contains an association of key values and data
address.

SysCat This is a special node type used internally to manage database meta
data. For example, the former ROOT file is now just a collection of
records in various system nodes. For example, a node "SYSTABLES"
contains a list of all available tables in all databases.

API Layer

The database directory (called catalog) services is an internal API, which is used
to maintain metadata on the database. For example, it associates a table name with
a node id, and an index with a node id and the table and the indices. In former Elo-
quence database, database meta data were kept in a ROOT file.

There is no ROOT file anymore and you can have any number of databases in a
database environment. All database meta information is now stored in catalog
tables in the database environment. Of course, this kind of information is pro-
tected against modifications via Eloquence application programs.

If you think of the old ROOT file as a collection of various information specific to
a single database, then this will become obvious:

22

Introduction
The Eloquence A.06.00 Database

Passwords Database access passwords
Items Data Items
Index Items Index Items
Data sets Database tables

All these informations are now simply stored in catalog tables inside the database.

For example:

SYSDB List of databases contained in the database environment
SYSTABLES List of tables
SYSCOLUMNS Column (item) definitions
SYSINDICES Index definitions

The Image API provides the Image functions such as DBPUT or DBGET. The
new Image API additionally provides functionality for transaction management.

The new database is not limited to the Image API. While not included with Elo-
quence, another API such as SQL could be used to access the data simultaneously.

Compatibility

The new Eloquence database will be highly compatible with the previous imple-
mentation. From a programming point of view, it does not matter, how a DBPUT
is implemented internally, as long as it works as before.

However database utilities such as SCHEMA, DBCREATE or DBUTIL are
affected:

For example, the schema processor will no longer create a ROOT file, but it will
send the database structural information to the database srever.

The new database isnot binary compatible to the previous implementation and the
database must be transferred by using dbexport/dbimport.

Eloquence version A.06.00 is able to access previous Eloquence databases by the
usage of the eloqdb5 server.

23

Introduction
Eloquence DBMS Organization

Eloquence DBMS Organization

The following sections describe the structure and access methods employed by
Eloquence DBMS.

Eloquence DBMS Logical Structure

Eloquence DBMS is organized into three sections:database definition, database
manipulation, anddatabase maintenance.

Database definition is accomplished using an editing program (for example, vi on
UNIX, Notepad on Windows) and the schema program. These programs are used
in conjunction with the database definition language (DBDL) to define the struc-
ture, size and security of a database.

Database access and manipulation is performed using the database manipulation
statements. These statements are invoked from Eloquence programs, and serve as
an interface between databases and application programs. The manipulation state-
ments handle database access and structural housekeeping.

Database maintenance operations are performed using the database utilities.
These utilities provide the capability to create, purge, and erase data sets. You can
also report on the structure of the database and, if desired, restructure the data-
base.

Database Organization

There are three basic structures within an Eloquence database:data items, data
entries, anddata sets.

A data item is the smallest data element. Each data item has a value and is refer-
enced by a data item name. Data items correspond to program variables within an
applications program.

24

Introduction
Eloquence DBMS Organization

A data entry, or record, is an ordered collection of related data items. All data is
transferred to and from a database on a record basis.

A data set is a collection of data entries sharing a common definition. All entries
in a data set are stored as a separate file in a directory and are referred to by a data
set name. Some examples are shown below:

Data Set Name: PRODUCT

Data Entry
Definition: PRODUCT-NO

PROD-DESC

Some examples are:

Data Item Name Data Item Values

PRODUCT-NO 50

100

1000

PRODUCT-DESC Tricycle

Standard Bicycle

10-Speed Bicycle

For example:

Data-Entry Definition PRODUCT-NO PRODUCT-DESC

Data Entry Values 50 Tricycle

100 Standard Bicycle

1000 10-Speed Bicycle

Entry

Record No.

1 50 Tricycle

25

Introduction
Eloquence DBMS Organization

Types of Data Sets

There are two types of data sets in the Eloquence DBMS:master data sets and
detail data sets. Detail data sets are used to store “line item” information. Master
data sets are generally used as indexes to information within detail data sets. For
example, the CUSTOMER detail data set shown below contains information
about a customer order, such as the customer’s name and the product purchased.
A related master set, PRODUCT, is used to point to all orders for a particular
product. This association of an item in a master data set is known as adata path.
The information in a master data set is unique (for example, one product number
100). Up to 16 data paths may be defined for a particular data set. The item used to
link the master data set with the detail data set is known as asearch item. Master
data sets have only one search item, but detail data sets may have up to 16 search
items.

Data entries contain pointer information used to link related entries. Detail entries
contain pointers to other entries containing the same search item value. This link-
age of related detail entries is known as adata chain. Master entries contain
pointers to the beginning and end of data chains, along with the number of entries
within the chain. This chain information is automatically maintained by the Elo-
quence DBMS.

2 1000 10-Speed
Bicycle

3 100 Standard
Bicycle

26

Introduction
Eloquence DBMS Organization

Figure 2 Data Chain Example

CUSTOMER (detail) Data Set

RECORD
NUMBER

FORWARD
CHAIN
POINTER

BACKWARD
CHAIN
POINTER

SEARCH
ITEM
(PRODUCT-NO)

OTHER
DATA
(NAME)

1
2
3
4
5
6
7

0
5
0
6
7
0
0

0
0
0
0
2
4
5

100
50

500
300
50

300
50

Jimmy Dailing
Malcomb Gissing
Barton Decker
Sean Houseman
Sam Johnson
Bart Bekker
Thomas Smith

PRODUCT (master) Data Set

RECORD
NUMBER

FIRST IN
CHAIN

LAST IN
CHAIN

SEARCH
ITEM
(PROD-NO)

OTHER
DATA
(PROD-DESC)

1
2
3
4
5

1
2
0
0
4

1
7
0
0
6

100
50

1000
500
300

Standard Bicycle
Tricycle
10-Speed Bicycle
5-Speed Bicycle
3-Speed Bicycle

27

Introduction
Data Access

Data Access

Database access and manipulation is performed using the data manipulation state-
ments. These statements, which are specifically designed to interact with an Elo-
quence database, are invoked through Eloquence language programs. These
statements are structured so that each one suggests its function (for example,
DBGET gets data from a data set). All data access is carried out at the data entry
level (this is known as the “full record mode”). Data entries may be accessed in
one of five modes:serial, directed, chained, indexed or calculated.

Serial Access

When accessing a data set in serial mode, Eloquence DBMS starts at the most
recently accessed record (data entry), called thecurrent record and sequentially
examines records until the next, non-empty record is located. This record is then
transferred to the data buffer and becomes the new current record. Serial access is
often used to examine or list all entries in a data set.

The following example shows entries in the PRODUCT master data set. The
record numbers are shown to the left of each entry. The arrows to the left of the
record number show how entries will be retrieved in serial mode. If the current
record is 4, for example, the next record accessed in serial mode will be record
number 5.

Figure 3 A Serial Access of the PRODUCT Master Data Set

SEARCH
ITEM

OTHER
DATA

100
50

1000
500
300

Standard Bicycle
Tricycle
10-Speed Bicycle
5-Speed Bicycle
3-Speed Bicycle

RECORD
NUMBER

1
2
3
4
5

28

Introduction
Data Access

Directed Access

A second method of accessing a data entry is directed access. With this method,
Eloquence DBMS returns the record specified by a record number supplied by a
program. If the specified record is non-empty the record is transferred to the data
buffer. If the record is empty a status error is returned. In either case, the current
record is set to the record specified. Directed access is used to read entries follow-
ing a SORT or FIND operation.

The following example shows the retrieval of an entry using directed access. The
record number 5, supplied by an application program, instructs Eloquence DBMS
to retrieve record 5. Eloquence DBMS then copies the record into the data buffer
and resets the current record to 5.

Figure 4 Directed Access of the PRODUCT Master Data Set

Chained Access

Chained access is used to retrieve detail data entries with common search item
values. Eloquence DBMS supports chained access in a forward direction. Entries
along a data chain may be accessed in a reverse direction, however, by using
directed access and the status information returned by Eloquence DBMS. Chained
access of detail data sets is often used for retrieving information about related
events.

The following example shows the retrieval of detail entries using chained access.
The corresponding chain pointer information, maintained by Eloquence DBMS, is
shown along with the record number for the data set. Eloquence DBMS uses this
pointer information to retrieve the next entry along the chain. The arrows to the

SEARCH
ITEM

OTHER
DATA

100
50

1000
500
300

Standard Bicycle
Tricycle
10-Speed Bicycle
5-Speed Bicycle
3-Speed Bicycle

RECORD
NUMBER

1
2
3
4
5

Record

Number 5

Supplied

29

Introduction
Data Access

left of the record numbers show how entries will be retrieved in chained mode. If
the current record is 5, for example, the next record accessed in chained mode will
be 7.

Figure 5 Chained Access of the CUSTOMER Detail Data Set

Calculated Access

Calculated access is based on a search item value, and may be used to access mas-
ter data sets only. This access method involves assigning a search item to a data
set, where the assignment of search item to data set is carried out by the ISAM
software using index files.

The following example shows the retrieval of an entry using calculated access.
The search item value 500, which is supplied by an application program, is used
by Eloquence DBMS to locate record number 5. The record is copied into the data
buffer and the current record is set to 5.

This example also shows two deleted (blank) records. When a record is deleted
from a data file, the space taken by that record still remains in the file. When a
new record is added, it takes an available space left by a deleted record. If there
are no deleted (blank) records, the new record is added to the end of the file.

CUSTOMER (detail) Data Set

RECORD
NUMBER

FORWARD
CHAIN
POINTER

BACKWARD
CHAIN
POINTER

SEARCH
ITEM
(PRODUCT-NO)

OTHER
DATA
(NAME)

1
2
3
4
5
6
7

0
5
0
6
7
0
0

0
0
0
0
2
4
5

100
50

500
300
50

300
50

Jimmy Dailing
Malcomb Gissing
Barton Decker
Sean Houseman
Sam Johnson
Bart Bekker
Thomas Smith

30

Introduction
Data Access

Figure 6 Calculated Access of the PRODUCT Master Data Set

Indexed Access

Indexed access is a further method of accessing individual data set entries or a
group of data set entries. It is similar to chained access, but there are differences:

• No master set is required, so indexed access can be used for all data set types.

• Combined search-items are possible (e.g. the first four characters of a name plus date
of birth). They don’t have to be unique.

• Access via just part of the search-item is possible (e.g., all customers whose names be-
gin with SAM).

• Data can be accessed in sorted form. By default, the index item values are sorted in
ASCII sequence, but other collating sequences can be specified at the time the database
is created.

Data File
 (dat)

100
50

1000

500

300

Standard Bicycle
Tricycle
10-Speed-Bicycle

Deleted Records
5-Speed Bicycle

Deleted Record
3-Speed Bicycle

50
100
300
500

1000

2
1
7
5
3

500

Desired Search
Item Value

Search
Item

Record
Item Search

Item
Record
Item

Sorted Index File
(idx)

31

Introduction
Data Access

Figure 7 Indexed Access

Index: Entry:

MC NO NAME

CAR

PET

SAM

SAM

TOM

100

200

300

400

500

CAROLINE BATE

SAMUEL JONES

TOM HAZEL

PETER BEYER

SAM BROWN

SAM

=== === ======

32

Introduction
Manual vs. Automatic Master Data Sets

Manual vs. Automatic Master Data Sets

A master data set may be eithermanual or automatic. These types of master data
sets have the following characteristics:

Manual Automatic

May stand alone. Need not be
related to any detail data set.

Must be related to one or more detail data sets.

May contain data items in addition
to the search item.

Must contain only one data item, the search
item.

Entries must be explicitly added or
deleted. A related detail data entry
cannot be added until a master entry
with a matching search item value
has been added. When the last detail
entry related to a master is deleted,
the master entry still remains in the
data set. Before a master entry can
be deleted all related detail entries
must be deleted.

Eloquence DBMS automatically adds or
deletes entries when needed based on the addi-
tion or deletion of related detail data set entries.
When a detail entry is added with a search item
value different from all current search item val-
ues, a master entry with matching search item
value is automatically added. Deletions of
detail entries trigger an automatic deletion of
the matching master entry if it is determined
that all related data chains are empty.

The search item values of existing
master entries serve as a table of
legitimate search item values for all
related detail data sets. Thus, a man-
ual master can be used to prevent the
entry of invalid data in the related
data sets.

33

Introduction
Database security

Database security

The Eloquence A.06.00 database has a different security concept than the previ-
ous version. The database server maintains its own user list (stored in the server
catalog). For each database, there are authorization groups where database spe-
cific privileges are assigned to. Users can become a member of those authoriza-
tion groups and will have all rights granted to this group.

The users "dba" (administrator) and "public" (generic user) are predefined when
the database environment is created. The "PASSWORDS" defined in the database
schema are converted into authorization groups and the read/write list is con-
verted to the apropriate privileges.

Eloquence has a new statement to deal with this:

DBLOGON(User$, Passwd$)

This will save the provided user id and password for a later connect to the data-
base server. If you omit the DBLOGON statement, the user "public" will be
assumed. When you do the first DBOPEN on a database server, the authorization
information is submitted and verified by the server.

The Password field in the DBOPEN statement is no longer used, because the
access capabilites are defined by the user/group.

The capabilities of a user for a specific database depends on the groups he/she is
associated with. So while you cannot delete the predefined users, you can simply
remove them from all authorization groups for a particular database and they end
up with no access or deny the connect privilege and the server will deny the con-
nection at all.

A sensible administrator would create real user names and associate them with
authorization groups. As an additional benefit, you have a single user name/pass-
word for all databases (on a single server). Schema associates the public user with
all authorization groups but this can easily be changed with the dbutil utility.

The user name is a random name, for example "marc". The password is an arbi-
trary string, eg. "The secret password". The server will validate the user and pass-
word on connction and associate the session with effective privileges.

A user may be a member of up to 8 groups per database. It will get all capabilities
associated with those groups. There is no limit on the number of user names and
groups.

34

Introduction
Database security

User privileges

User capabilities which are not database specific are specified by user privileges.
The following user privileges are available:

DBA The user has server administration privileges
CONNECT The user is allowed to connect the server. This is implied if a user has

theDBA privilege.
UADMIN The user is allowed to administrate user accounts

Group privileges

The Eloquence database uses groups (profiles) to manage database specific privi-
leges. When a user is associated with a group, it will gain all capabilities granted
to the group.

Group capabilities which are not data set specific are specified by group privi-
leges. The following group privileges are available:

DADMIN Group members have administration privileges for this database (this
is implied for users which have theDBA privilege).

DBPRIV Group members are allowed to assign database specific privileges.

Table privileges

The Eloquence database uses groups to manage database specific privileges. Table
(or data set) specific privileges are granted to groups. When a user is associated
with a group, it will gain all capabilities granted to the group.

The following table specific privileges are available:

READ Group members are allowed to read the dataset
WRITE Group members are allowed to write to the dataset This implies the

READ privilege.
ERASE Group members are allowed to erase the dataset.

Predefined users

When a new database environment is created (by dbvolcreate), two users are pre-
defined.

Table 1 Predefined users

user id Description
Default

Privileges

dba default administration user. DBA, UADMIN

35

Introduction
Database security

NOTE: The default users shouldnot be deleted, as they are used when creating a new database to
provide a default. If you don’t want them, simply remove the user privileges and they are
no longer active.

Predefined groups

When a new database catalog is created (by schema), two groups are created auto-
matically in addition to the groups defined by schema:

Privilege usage

public Default user. This is used when no user id is
known when opening a database (missing
DBLOGON before opening a database) and is
provided for backward compatibility.

CONNECT

Table 2

group id Privileges Assigned users

dba GADMIN, DBPRIV dba

public public

As defined in
schema

As defined in schema public

Table 3

Operation Privileges

Connect to the server CONNECT or DBA

Manage database user UADMIN

Manage user privileges UADMIN

Create database catalog (schema) DBA

Add database group DBPRIV

Assign user to database group DBPRIV

Table 1 Predefined users

user id Description
Default

Privileges

36

Introduction
Database security

Manage group privileges DBPRIV

Create a database (DBCREATE) DBA or DADMIN

Purge a database (DBPURGE) DBA or DADMIN

Erase data sets DBA, DADMIN or ERASE
privilige on specific data set

Table 3

Operation Privileges

37

Introduction
Getting started with the Eloquence A.06.00 database

Getting started with the Eloquence A.06.00 database

This section intends to provide a quick start to the new database. While this docu-
ment is a bit UNIX centristic, it applies to the Windows NT platform as well.

The examples below assume, that the data base server is running on a system
called "server" and is listening on port number 8800. If the server is running on
the local system, you could simply omit the host name. If the server is listening on
the port mapped to the eloqdb service, you can omit the port number as well. Of
course, you could also use a service name instead of the port number.

Create a data base environment

Login to your server system. The server system must have been configured
before. The configuration is described more detailed in the Installation and Con-
figuration manual.

• On Windows NT, the data base server must have been registered with the Windows NT
Service control manager.

• The TCP service name eloqdb should have been mapped to a port number (unless you
intend to use the port number directly).

• Create a new user account and group for use with the data base server (not required on
Windows NT)

Create a server configuration

First you need to create a server configuration file. You can either use the template
file in /opt/eloquence6/newconfig/config/eloqdb6.cfg or start from the scratch.
Since most configuration items are optional and provide a reasonable default it's
actually easy to start with an empty file.

eloqdb6.cfg

[Server]
Service=8800
UID = eloq
GID = eloq
LogFile = /tmp/eloqdb6.log

[Volumes]

Short description of the configuration settings:

• On Windows NT the UID and GID entries are not supported.

• On UNIX, you should create a separate uid/group for use with the Eloquence data base.
All data base volume files are owned by the "data base user". For testing purposes it is

38

Introduction
Getting started with the Eloquence A.06.00 database

also possible to use your own user/group.

• Service = 8800

By providing a port number we are not required to create the configuration in /etc/ser-
vices and we do not desturb any other running eloqdb6 server. Of course, the port
number must not already be in use.

• LogFile = /tmp/eloqdb6.log

All server log messages will be written into the file /tmp/eloqdb6.log. You should use
an absolute path here, because the current directory of the server could be a different
than you expect. If you omit this entry the server log is written to the syslog (UNIX) or
the Event Log (Windows NT) by default.

• [Volumes]

This section is initially empty and will be filled in by the dbvolcreate and dbvolextend
utilities.

Create the server root volume

dbvolcreate is used to create a new volume set. You need a config file with an
empty [volumes] section.

dbvolcreate -v -c eloqdb6.cfg /path/volume01.vol

This creates the root volume /path/volume01.vol with the default size (~2.5 MB)
and adds the volume path to the volume section of the config file. The config file
could even be empty during volume creation, but it must exist.

Additional dbvolcreate options.

 -s sz initial volume size in MB
 -e sz chunks the volume is extended by (MB)
 -m sz max volume size (MB)

Create the log volume

Next you need to create a log volume. The server refuses to start without one. The
dbvolextend utility is used to create additional volumes.

dbvolextend -v -c eloqdb6.cfg -t log /path/volume02.vol

This will create the log volume and append it in the volume section of the config
file. Additional dbvolextend options.

 -s sz initial volume size in MB
 -e sz chunks the volume is extended by (MB)
 -m sz max volume size (MB)

39

Introduction
Getting started with the Eloquence A.06.00 database

The log volume will need at least enough space to hold all commited transactions
between two check points. So starting a huge dbimport with a large Checkpoint-
Freq setting may cause the log volume to grow and use a huge amount of disk
space.

Start the server

Next start the server. Logging into a file with mode "*1" is probably a good idea in
the beginning. This example will set the log mode on the commandline but it can
also be defined in the config file (see eloqdb6.cfg).

On UNIX:

eloqdb6 -d"*1" -c eloqdb6.cfg

On Windows NT:

You normally start the data base server from the Windows NT control panel. You could
also start the data base server from the commandline by specifying the-standalone
option. However this is only considered a debug tracking option and should not be used
regulary.

eloqdb6 -standalone -d"*1" -c eloqdb6.cfg

If the server comes up, you sucessfully created a db environment. Else have a look
at the log file (/tmp/eloqdb6.log in this example).

If you kill the server (please no -9 or you will have stuck IPC resources) or if the
server did crash due to a problem, all committed but not yet completed transac-
tions are recovered automatically.

Create a data base

Since we now should have the server up and running, all remaining actions follow
the client/server model. So you should now login to your client system.

The new data base server does no longer use ROOT files. Instead it includes a
special data base (the system catalog) which is used to hold the data base struc-
ture. Actually, there are several catalogs: One which is used to hold server global
information and a seperate one for each data base. You can use the dbdumpcat
utility to have a look into the server catalogs. The new data base provides its own
authorization scheme and list of users.

The server has two predefined users, "dba" and "public" which are created when
the database environment is generated. By default the user dba has administrative
capabilities (for example it can create a new data base) but is not allowed to
access any data. The user "public" by default has no administrative capabilities

40

Introduction
Getting started with the Eloquence A.06.00 database

but is allowed to access the data base contents. The user "public" is also used as a
default user whenever a data base is opened without providing authorization
information to the server (please refer to the DBLOGON statement more informa-
tion).

The dbutil utility can be used to create additional users and to maintain the access
rights.

Create a data base

The new schema utility transmits the data base structure from a SCHEMA file to
the data base server:

schema -u dba -h server -s 8800 db.txt

This will create the data base catalog on the specified server. The server name can
be omitted if the server is running on the local system. Specifying a service name
or port number can be omitted if the server is using the default eloqdb service.

The -u dba is required. It will identify you as user dba to the server. All command-
line tools use $LOGNAME as the default user. After the schema succeeded, you
should be on known grounds. dbcreate and dbimport should work as expected.

dbcreate -u dba server:8800/db

dbimport -vs db.exp -u public server:8800/db

Please note, that the -u public argument is required. It will identify you as user
public to the server. All commandline tools use $LOGNAME as the default user.

41

3

Database Definition

42

Database Definition
Introduction

Introduction

All Eloquence databases are defined using thedatabase definition language
(DBDL). Once the database has been defined using the DBDL, an editing pro-
gram is used to create a text file containing the database definition. This definition,
known as aschema, is used by the schema program to creste thedatabase cata-
log. The database catalog is stored on the databse server and contains the struc-
tural information of the database. Database utilities are used to allocate server
resources for the databases (beyound the structural information). This is called
database creation. Transposed to the more common file system paradigm, creating
the database catalog would be equivalent to the creation of a directory and creat-
ing the data sets would be equivalent to creating files in the directory. Once the
database has been created, the database is ready to be accessed by either applica-
tion programs or Eloquence Query. This database definition sequence is summa-
rized below.

1 Define the database using the DBDL.

2 Use a text editor (for example, vi on UNIX or notepad on Windows) to create the sche-
ma.

3 Execute the schema program to create the database catalog.

4 Use utilities to create the database.

Database Definition Procedure

A database definition is organized into three sections—password, item, and set.
Each section defines a particular part of the database. Additional statements are
used to specify the database name, to specify page control, and to designate the
end of the database definition. A database definition is organized as shown below.

 BEGIN DATABASE database-name definition ;

 DEFAULT LANGUAGE collating sequence definition ;

 PASSWORDS: password-definition section ;

 ITEMS: item-definition section ;

 IITEMS: index-item-definition section ;

 SETS: set-definition section ;

 END.

Each database definition statement must begin on a new line. Comments, which
start with either a # or double carets (<<), will be ignored until end of line.

43

Database Definition
Database Definition Language

Database Definition Language

Database-Name Definition

The first part of a database definition is the statement specifying the database
name and the root file location. The format of this statement is as follows:

BEGIN DATA BASE database name;

Thedatabase name is from 1 through 6 characters and may consist of uppercase
alphabetic characters, the numbers 0 through 9, or the minus sign (−). The name
must begin with a letter. This statement must be terminated by a semicolon.

For example:

 BEGIN DATA BASE EXAMPL;

Index item default collating sequence

You can optionally specify a default collating sequence which will control the
order in which string elements in an index are to be sorted. You may find this use-
ful for handling the order of national character-sets correctly. If you don’t specify
a default collating sequence or an index-specific collating sequence, the index
order will be according to binary values. The sequence must be installed on your
machine and will be stored in the root file. The syntax is as follows:

DEFAULT LANGUAGElanguage [@modifier] ;

For example:

 DEFAULT LANGUAGE german@nofold;

Password Definition

The password-definition section follows the database-name definition. The pass-
word section begins with the following statement:

PASSWORDS:

It is followed by a list of user-class numbers and their corresponding passwords.
Each password definition has the following form:

user-class number password;

44

Database Definition
Database Definition Language

Each user-class number, password pair must appear on a new line. Theuser-class
number is an integer from 1 through 31 and must be unique within the password
section.Passwords are from 1 through 8 ASCII characters, excluding semicolons,
blanks and tabs. If the same password is assigned to multiple user class-numbers,
the lowest-numbered class will be used. Lines containing only a user-class num-
ber and a semicolon will be ignored.

For example:

 PASSWORDS:
 31 Clerk;
 5 Gum-ball;
 10 SECRET;
 15 ; <<Not currently assigned
 22 %-+ ;

NOTE: The term "Passwords" is a bit misleading here, as passwords are now converted to database
specific access groups to which acess privileges to individual tables (data sets) are
assigned. The passwords section is included for backwards compatibility. It is
recommended to use the DBUTIL utility to maintain database access privileges.

NOTE: Passwords defined in a schema text file are always upshifted, i.e. only passwords in
uppercase letters can be defined.

Item Definition

The item-definition section follows the password section. The item section begins
with the following statement:

ITEMS:

It is followed by a list of all items that are to be used in the database. Up to 1024
data items may be defined in a database. Each item definition has the following
form:

item name, [sub-item count] specifier [(control no.)];

The item name is from 1 through 15 characters and may consist of uppercase
alphabetic characters, the numbers 0 through 9, or the minus sign (−). The name
must begin with a letter. Item names must be unique within the item section.

Thesub-item count is used to define the array length of compound data items (one
dimensional item array). An omitted sub-item count or a sub-item count of 1 spec-
ifies a simple item. The sub-item count, if specified, must be an integer 1 or
greater.

45

Database Definition
Database Definition Language

Thespecifier is used to declare the item type. Items may be defined to contain
numeric data or ASCII string data. The string designator must be followed by the
maximum string length. The string length must be even and cannot exceed 4096
characters. The item specifiers are described below.

* These numbers are for simple items (sub-item count equal to 1). To compute the
item length for compound items, multiply the item length shown by the sub-item
count.

** The sub-item count is limited by the maximum record length which is 4096
bytes.

Thecontrol number is used for external item formatting and must be an integer
from 0 through 127. This number may be retrieved using an Eloquence statement,
but is otherwise ignored. The control number is provided for use by application
programs. Query, for example, uses the number to determine the format of
numeric data and to prevent Query from modifying sensitive data. Refer to the
Eloquence Query Manual for more information.

Specifier Type Description Range Item
Length *

Max.
Sub-item
Count **

L or R8 Long(Numeric) Denotes a 12-digit-
floating-point num-
ber.

± 9.99999999999E125
through
±1.00000000000E-130

8 bytes 512

S or R4 Short(Numeric) Denotes a 6-digit-
floating-point num-
ber.

± 3.40282E+38
through
±1.17549E-38

4 bytes 1024

I or I2 Integer(Numeric) Denotes a 16-bit inte-
gernumber (binary).

+32767
through
-32768

2 bytes 2048

D or I4 DoubleInte-
ger(Numeric)

Denotes a 32-bit inte-
gernumber.

+2147483647
through
-2147483648

4 bytes 1024

X String Denotes an ASCII-
characterstring. Must
be followed by an
integer-character
count.

Up to 4096 characters 1 byte per
character

4096
bytes

46

Database Definition
Database Definition Language

Here is an example item-definition section:

 ITEMS:
 IN-STOCK, I;
 COUNT, D;
 COST, S;
 TOT-SALE, L;
 DESCRIPTION, X30;
 MONTH, 12X10; <<12 element array

Index Item Definition

The index item definition follows the item section. The index item definition
begins with the following statement:

 INDEX ITEMS:

or

 IITEMS:

It is followed by a list of all index items to be used in the database. Each definition
has the following format:

iitem name = item name [:length] [,item name ...];

The iitem name is from 1 to 15 characters in length and can consist of uppercase
alphabetic characters, the digits 0 to 9, or the minus sign. The name must begin
with a letter. Iitem names must be unique within the item and the iitem section.
The item name is the name of an already defined item. The referenced item must
not be a compound item. If the referenced item is a string item, it is possible to
specify a different significant string length to be used. Up to 7 items can be used to
form an iitem. The total index length must not exceed 116 bytes.

Example of an iitem definition section:

 ITEMS:
 PRODUCT-DESC, X30;
 FIRSTNAME, X30;
 LASTNAME, X30;
 BIRTHDATE, D; # Format YYMMDD

 IITEMS:
 PRODUCT-MC = PRODUCT-DESC:6;
 MATCHCODE = LASTNAME:3, FIRSTNAME:2, BIRTHDATE;

PRODUCT-MC is defined as the first 6 characters taken from PRODUCT-DESC.
MATCHCODE is defined as the first 3 bytes taken from LASTNAME, the first 2
bytes from FIRSTNAME, and the BIRTHDATE.

47

Database Definition
Database Definition Language

NOTE: All index items are stored in separate index tree for the data set. The longer the definition
of an index item, the more storage space is required to store the tree. Index items do not
require storage space in the entry.

Set Definition

The set-definition section follows the item section. The set section begins with the
following statement:

SETS:

It is followed by a list of data set definitions. The END statement may follow the
last set defined in the database. Syntax for this statement is as follows:

END.

Master Data Set Definition

Manual master data sets are defined using the following format:

[item name ,]
[item name ,]

:
 :

[item name];

[iitem name[collating sequence]

 [,iitem name [collating sequence] ...];]

* If the entry is defined with only one item name, the ENTRY line is terminated
with a semicolon instead of a comma.

** Capacity is only available for backward compatibility and should be omitted.

NAME:

N:

set name,
MANUAL

M

(read list/write list);

ENTRY:

E:

item name (path count)[] , *

INDEX:

I:

CAPACITY:

C:

maximum-entry count; **

48

Database Definition
Database Definition Language

Automatic master data sets are defined using the following format:

[iitem name[collating sequence]

 [,iitem name [collating sequence] ...];]

Theset name refers to the master data set being defined. The name is from 1
through 15 characters, and may consist of uppercase alphabetic characters, the
numbers 0 through 9, or the minus sign (−). The first character must be a letter. All
set names must be unique within the schema.

Theread list andwrite list contain user-class numbers separated by commas, and
are used to determine which user classes have access to the data set. Specifying a
user-class number (an integer from 0 through 31) in the read list allows that user
class to have read access to the data set. Specifying a user-class number in the
write list allows that user to have read and write access to the data set. The read
list may be null, but the write list must contain at least one user-class number.

NOTE: Specifying a user-class number of 0 for read list or write list means read or write access
without a password. This is because it is not possible to define a password for a user-class
number of 0.

Theitem name is the name of a data item previously defined in the item-definition
section. Each item name must be unique within the data set. A data entry in a
manual data set may be defined with up to 1024 item names. A data entry in an
automatic data set must contain only one item name. The line containing the last
item name in the entry specification must be terminated with a semicolon. The
first item appearing in the entry definition is known as thesearch item. The
search item must have a sub-item count of 1 (simple item) and must be no longer
than 120 bytes.

NAME:

N:

set name,
AUTOMATIC

A

(read list/write list);

ENTRY:

E:

item name (path count)[] ;

INDEX:

I:

CAPACITY:

C:

maximum-entry count; **

49

Database Definition
Database Definition Language

Thepath count specifies the number of paths to be established to detail data sets.
Specifying a path count is optional. If specified, it must be an integer from 0
through 16 and must match the detail references. A manual master set with a path
count of 0 is known as astand-alone master set (not associated with a detail data
set). For automatic master data sets, the path count is an integer from 1 through
16. Automatic master data sets cannot stand alone.

The iitem name is the name of an index item previously defined in the index item
definition section. Each iitem must be unique for this set. All items in an iitem
definition must be in the set entry list. The last iitem name must be terminated
with a semicolon.

The optionalcollating sequence controls the order in which string elements in the
index are to be sorted. You can specify an index-specific sequence which you may
find useful for handling the order of national character-sets correctly. If you don’t
specify a collating sequence, the DEFAULT LANGUAGE will be used (if
defined; otherwise the binary values). The sequence must be installed on your
machine and during creation will be stored in database catalog. You can specify a
language and a modifier, for example:

 ...
 INDEX: MATCHCODE /german@nofold;

Themaximum-entry count must be an integer from 1 through 232−1. This number
historically specified the maximum number of entries to be stored in the data set.
It is now optional, and is for information purposes only. No space is reserved in
advance. If the number of entries stored in the data set increases beyond this num-
ber, it increases accordingly. The value of themaximum-entry count can be deter-
mined by using the dbinfo utility. The count will remain at its highest value unless
reset with the dbutil utility.

Examples of data set definitions are shown in chapter 6.

Detail Data Set Definition

Detail data sets are defined using the following format:

[item name [(master-set name)],]
[item name [(master-set name)],]

 :

NAME:

N:

set name,
DETAIL

'D

(read list/write list);

ENTRY:

E:

item name (master-set name)[] , *

50

Database Definition
Database Definition Language

 :
[item name];

[iitem name[collating sequence]

 [,iitem name [collating sequence] ...];]

* If the entry is defined with only one item name, the ENTRY line is terminated
with a semicolon instead of a comma.

** Capacity is only available for backward compatibility and should be omitted.

Theset name refers to the detail data set being defined. The name is from 1
through 15 characters and may consist of uppercase alphabetic characters, the
numbers 0 through 9, or the minus sign (−). The first character must be a letter. All
set names must be unique within the schema.

Theread list andwrite list contain user-class numbers separated by commas and
are used to determine which user classes have access to the set. Specifying a user-
class number (an integer from 0 through 31) in the read list allows that user class
to have read access to the data set. Specifying a user-class number in the write list
allows that user to have read and write access to the data set. The read list may be
null, but the write list must contain at least one user-class number.

Theitem name is the name of a data item previously defined in the item-definition
section. Each item name must appear on a new line and must be unique within the
data set. A data entry may be defined with up to 1024 item names. The line con-
taining the last item name in the entry specification must be terminated with a
semicolon.

Themaster-set name refers to a previously defined master data set. When a mas-
ter-set name follows an item name, it indicates that the data item is a search item
linking the detail data set to the named master set. Up to 16 data paths may be
defined. If no data paths are defined in the detail set, the set is known as astand-
alone detail set.

In order for a data path between a master and a detail set to be valid, the search-
item type (I, D, S, L, or X) in each data set must be the same. For string items
(type X), the string lengths must also be the same. The search-item name in the
master data set does not have to match the search-item name in the detail data set.

INDEX:

I:

CAPACITY:

C:

maximum-entry count; **

51

Database Definition
Database Definition Language

Only simple items (sub-item count equal to 1 or not specified) can be search
items. Also, the search item must not be longer than 120 bytes (an ISAM limita-
tion).

The iitem name is the name of an index item previously defined in the index item
definition section. Each iitem must be unique for this set. All items in an iitem
definition must be in the set entry list. The last iitem name must be terminated
with a semicolon.

Thecollating sequence controls the order in which string elements in the index
are to be sorted. You can specify an index-specific sequence which you may find
useful for handling the order of national character-sets correctly. If you don’t
specify a collating sequence, the DEFAULT LANGUAGE will be used (if
defined; otherwise the binary values). The sequence must be installed on your
machine and during creation will be stored in the database catalog. You can spec-
ify a language and a modifier, for example:

 ...
 MATCHCODE /german@nofold;

Themaximum-entry count must be an integer from 1 through 232−1. This count
specifies the maximum number of entries to be stored in the set. For examples of
data set definitions see “Set Definition” on page 47.

52

Database Definition
Schema Statements

Schema Statements

The database definition (schema) can include statements to select schema options
and to specify page control. Each statement must appear on a separate line, and
may appear anywhere within the schema. These statements, known as schema
commands, cannot contain comments.

If a parameter list is included with the command, it must be separated from the
command name by at least one blank. Parameters must be separated by commas.
Blanks may be freely inserted between items in the parameter list.

The $TITLE Statement

The $TITLE statement specifies a character string to be printed at the top of each
new page of the schema listing. It does not cause a page eject. Syntax for the
$TITLE statement is as follows:

$TITLE ["character string"]

The title specified by the character string overrides any title specified by previous
$TITLE or $PAGE statements. If the character string is omitted, no title will be
printed until a subsequent $TITLE or $PAGE statement specifies one. Title strings
longer than 30 characters are truncated.

The $PAGE Statement

The $PAGE statement causes the schema listing to eject to the top of a new page,
unless the NOLIST option has been selected by a previous $CONTROL state-
ment. The $PAGE statement is not listed. Syntax is as follows:

$PAGE ["character string"]

If a character string is specified, the string replaces the title string specified by a
previous $TITLE or $PAGE statement. If no character string is specified, the title
string is unchanged. Title strings longer than 30 characters are truncated.

The $CONTROL Statement

The $CONTROL statement selects schema options. Syntax is as follows:

$CONTROLoption list

Options available are as follows:

53

Database Definition
Schema Statements

LIST Causes the schema program to list each source record from the
text file. The listing is printed on the standard printer.

NOLIST Turns off the LIST option. When an error is found during
schema operation, the source record in which the error occurred
is listed, followed by an error message.

ROOT Causes the schema program to connect the database server and
create a database catalog if no errors are detected in the
schema.

NOROOT Prevents the schema program from building a database catalog.

ERRORS=nnn Sets the maximum number of allowed errors equal tonnn. If
this number is exceeded during processing, the schema pro-
gram terminates immediately. The number must be an integer
value from 0 through 999.

LINES=nnn Sets the number of lines to be printed on a page. The number
must be an integer. Specifying 0 causes lines to be printed con-
tinuously (no page break).

TABLE Causes the schema processor to print a table containing data set
information following the listing. The information includes
data set, name, type, number of fields, path number, length,
media record length, capacity, number of sectors, and volume
labels.

NOTABLE Suppresses table option.

 The $CONTROL options can be placed in any order, but each must be separated
by a comma. At least one option must be specified when using $CONTROL.

Options not redefined by a $CONTROL statement default to the following:

 NOLIST
 ROOT
 ERRORS = 0
 LINES = 0
 NOTABLE

These default options are equivalent to using the following $CONTROL com-
mand:

 CONTROL NOLIST, ROOT, ERRORS = 0, LINES = 0, NOTABLE

Other examples of $CONTROL statements are as follows:

 $CONTROL NOROOT, LIST
 $CONTROL ERRORS = 20

54

Database Definition
Schema Statements

NOTE: The listing and root file options can also be specified using the schema command. This is
recommended over the $CONTROL statement. By using the schema command options, it
is not necessary to edit a text file whenever you want to change an option, as with the
$CONTROL statement.

NOTE: $CONTROL options override schema command options.

55

Database Definition
The Schema Program

The Schema Program

The schema program is used to create the database catalog. Once the database has
been defined using the DBDL, a text file containing the definition is created using
an editing program (for example, vi). This text file is used by the schema program
to generate a listing of the database definition and to produce the database catalog.
If a database catalog with the same name is already present on the database server,
schema will fail.

Using the Schema Program

To run the schema program, execute the following commandfrom the HP-UX
prompt:

schema [options]filename

Options:

-help Give usage (this list)

-u user Set user name to use to logon at the database server. By default,
the login id is used.

-p pswd Set password to use to logon at the database server.

-h host The host name on which the database server is running. This
defaults to the local system.

-s service The service name or port number used to connect the database
server. This defaults to the service name eloqdb.

-t Table of sets to be output (summary of information about the
datasets).

-l Routes the result of the schema analysis to the standard output
device (stdout). The standard output device can be the screen, a
printer, or a file. When the schema command is executed with-
out the -l option, nothing is sent to the standard output device.

-n Tells the schema program not to generate the database catalog.
This option is useful when you want to perform a syntax check
of the schema file.

filename This variable should be replaced with the name of the text file
containing the data definition. The fully-qualified filename is

56

Database Definition
The Schema Program

required.

NOTE: You need administrative capabilities on the database server in order to create a database
catalog.

Schema Example

To syntax check the file SAD.txt and create the database catalog on the database
server running on the local host, enter the followinf command:

 schema -l SAD.txt

The file SAD.txt is analyzed and the contents of this file are printed on the screen.
If the syntax analysis reveals no errors, the database catalog is generated. To con-
tact a database server other than the default one, you must specify the -h or -s
option.

Display:

 B1368A SCHEMA (C) COPYRIGHT MARXMEIER SOFTWARE AG 2002 (A.03.10)

 BEGIN DATA BASE SAD;

 PASSWORDS:
 10 SALESMAN;
 15 MANAGER;
 3 SECRTARY;

 ITEMS
 ADDRESS, 2 X30;
 CITY, X16;
 COUNTRY, X12;
 DATE, I;
 NAME, X30;
 OPTION-DESC, X10;
 OPTION-PRICE, L;
 OPTION-TYPE, I;
 ORDER-DATE, I;
 ORDER-NO, X10;
 PRICE, L;
 PRODUCT-NO, I;
 PROD-DESC, X30;
 REGION, X6;
 REGION-DESC, X30;
 REGION,TYPE, I;
 SALESPERSON, X4;
 SHIP-DATE, I; <<MUST BE YYMM>>
 STATE, X6;
 ZIP-CODE, X8

 IITEMS:
 PRODUCT-MC = PROD-DESC:6;
 CUS-MC = NAME:6;
 I-SALES-PROD = SALESPERSON, PRODUCT-NO;

 SETS: << Set defintion >>

 NAME: DATE, A (3/10,15);

57

Database Definition
The Schema Program

 ENTRY: DATE (2);

 NAME: ORDER, A (3/10,15);
 ENTRY: ORDER-NO (2);

 NAME: PRODUCT, M (3,10/15);
 ENTRY: PRODUCT-NO (1)
 PROD-DESC;
 INDEX: PRODUCT-MC;

 NAME: LOCATION, M(3,10/15);
 ENTRY: REGION (1),
 REGION-DESC,
 REGION-TYPE;

 NAME: OPTION, D (3/10,15);
 ENTRY: ORDER-NO (ORDER),
 OPTION-DESC,
 OPTION-PRICE,
 OPTION-TYPE;

 NAME: CUSTOMER, DETAIL (3/10,15);
 ENTRY: ORDER-NO (ORDER),
 NAME,
 ADDRESS,
 CITY,
 STATE,
 COUNTRY,
 ZIP-CODE,
 ORDER-DATE (DATE),
 SHIP-DATE (DATE),
 REGION (LOCATION),
 PRODUCT-NO (PRODUCT),
 PRICE,
 SALESPERSON;
 INDEX: CUS-MC, I-SALES-PROD;

 END.

58

Database Definition
The Schema Program

59

4

Database Manipulation

60

Database Manipulation
Introduction

Introduction

This chapter introduces the Eloquence DBMS manipulation statements. A func-
tional description of each statement is provided as well. Since a working knowl-
edge of the Eloquence language is assumed throughout this chapter, refer to the
Eloquence Manual when necessary.

The following list summarizes the manipulation statements. For example pro-
grams using these statements, refer to page 141 . The syntax conventions used in
this chapter are the same as those described in page 11 .

DBLOGON Provides authorization information used when contacting the
database server.

DBOPEN Initiates access to a database. Sets up the access mode and user-
class number for the specified database.

DBCLOSE Terminates access to a database.

DBGET Reads the data items of a specified entry in a data set.

DBUPDATE Modifies specified item values in an entry. (Search items cannot
be modified.)

DBPUT Adds new entries to a data set.

DBDELETE Deletes existing entries from a data set.

DBFIND Locates the first and last entries of a data chain in a detail data
set in preparation for access to that chain.

DBINFO Provides structural database information such as data item
names, data set names, and field descriptions.

DBBEGIN Initiates a transaction.

DBCOMMIT This statement finishes a transaction.

DBROLLBACK This statement interrupts a transaction and all database modifi-
cations since the DBBEGIN of this transactionent.

DBLOCK Locks database records to allow the user exclusive access.

DBUNLOCK Unlocks database records locked with previous DBLOCKs.

DBASE IS Defines the database to be used prior to the IN DATA SET
statement.

61

Database Manipulation
Introduction

IN DATA SET Automatically packs the buffer parameter during DBPUT and
DBUPDATE. Automatically unpacks the buffer after DBGET.

PREDICATE Defines the database records to be locked via DBLOCK.

62

Database Manipulation
The DBLOGON Statement

The DBLOGON Statement

DBLOGON establishes a logon to a database server, not to a certain database.
During the DBOPEN and the following database statements, the username and the
password is used to examine the permissions on that dataset.

 DBLOGON (User$, Pswd$)

The parameters are:

User$ A string variable containing the username (not case sensitive).
This is used to identify the user and associated privileges for
subsequent database operations.

Pswd$ A string variable containing the password for the specified user
(case sensitive).

The DBLOGON statement does not perform authentification by itself. It saves the
user name and password which is used subsequently when connecting to a data-
base server or opening a database. DBLOGON is typically specified only once
and the authorization information is used for all databases. When no DBLOGON
statement is executed or an empty user name is passed, the default user "public" is
used.

The Eloquence data base provides a its own authorization scheme. A list of users
is maintained per data base server. For each data base, there are authorization
groups which have specific rights on this particular data base. A user can be a
member of up to eight authorization groups.

For Eloquence A.05.xx databases (through the eloqdb5 server) the logon informa-
tion is ignored and the database password is used.

63

Database Manipulation
The DBOPEN Statement

The DBOPEN Statement

DBOPEN syntax:

 DBOPEN (base name, password, mode, status)

The parameters are:

base name A string variable containing the database name preceded by
two blank spaces.

password A string expression containing a left-justified ASCII string.

mode A numeric expression equal to 1, 3, 8 or 9.

status An integer array variable that returns status information after
DBOPEN is executed. The array must contain at least ten ele-
ments in its right-most dimension.

Eloquence A.06.00 uses the client/server model to connect to a database server.
Since the data base server can run on a different machine and there could be more
than one server on a machine, the DBOPEN syntax accomplish this.

• The data base name uses an extended syntax.

• The Eloquence A.06.00 data base provides a new authorization scheme.
The data base password is ignored with the Eloquence A.06.00 data base. It is
still used when connecting to a A.05.xx data base (through the eloqdb5 server).

The DBOPEN statement uses a database specification, which consists of three
terms:

• The machine, the data base server is running on, this defaults to the local system.
Otherwise, the server hostname or "IP address" is required.

• The data base server is listening on a certain port for connections. If this port
has not the one mapped to the default service name (eloqdb), the service name or
port number must be specified. This port is mapped to a service name in the con
figuration file "/etc/services" (on UNIX).

• The database server handles any number of data bases in one data base environment.
The data base name is required.

• The A.05.xx database server (eloqdb5) needs an absolute path to locate the data base
ROOT file in the file system. An absolute path must be specified.

• All elements besides the data base name can be defined in aVOLUME definition, so
there should be no impact for existing programs.

64

Database Manipulation
The DBOPEN Statement

The syntax is as below:

 [[server][:service]/][Database]

server The name or IP number of the system running the database
server. If it is omitted, the local system is assumed.

service The service name or port number of the data base server. If it is
omitted, the default service name "eloqdb" is assumed.

database The database name.

• For Eloquence A.05.xx databases, this is the absolute path.

• For Eloquence A.06.xx, this is simply the data base name.

NOTE: The data base name is not case sensitive.

For example:

 Db$=" sampledb"

 DBOPEN(Db$,"",1,S(*))

This opens the database sampledb on the local system, using the default service.

 Db$=" server/sampledb"

This would connect the default data base server running on the system named
"server".

 Db$=" server:eloqdb5/path/to/sampledb"

This would connect the data base server, running on the system named "server"
using the port associated with the service name "eloqdb5". For Eloquence A.05.xx
compatible data bases, it is required to specify an absolute path.

All the connection details could be hidden in a VOLUME definition. If a volume
DBVOL is defined as below (for example in your .eloqrc file)

 DBVOL="server:eloqdb5/path/to"

then the code below

 Db$=" sampledb,DBVOL"

would connect to data base server:eloqdb5/path/to/sampledb.

65

Database Manipulation
The DBOPEN Statement

DBOPEN Modes

A database may be opened in one of four modes. These modes determine the type
of operations that can be performed by all users accessing the database.

Mode 1: Modify shared with database locking. Data entries may be read and
written within the constraint of the user-class number granted by DBOPEN. Data-
bases opened in mode 1 should be locked (DBLOCK) before data set entries may
be added, deleted, or modified. If one user uses DBLOCK, all others also have to
lock.

Mode 3: Modify exclusive. DBLOCK and DBUNLOCK statements are not
required in this mode. Exclusive access is obtained for reading and/or writing.
Although the database may change in content, it does so under your exclusive
control. Control is relinquished after executing a DBCLOSE operation. Other
requests for access to the database are refused until a DBCLOSE operation is exe-
cuted.

Mode 8: Read shared. The database is opened for shared read access. Writing to
the database is not permitted.

Mode 9: Open for read, allow concurrent update. The database is opened for
read access. Other programs may open database in modes 1 and 8.

If successful, DBOPEN replaces the first two characters of the base name string
variable, formerly blanks, with an ASCII database number between 00 and 09.
This is the internal ID number of the database and should not be altered.

A corrupt database is accessible in mode 8. StatusERROR−94 is returned if the
database is corrupt.

DBOPEN Status Array

A DBOPEN error assigns a non-zero conditional word (CW) to the first element
of the status array. A list of all CW values and their meanings appear in page 197 .
The following table describes the status array contents after a successful
DBOPEN.

Array
Element

Value Description

1 0 CW.

2 0 through 31 User-class number.

66

Database Manipulation
The DBOPEN Statement

3 0

4 0

5 0

6 Bits 0 through 11 The DBOPEN identification number (401).

Bits 12 through 15 The mode value used to open the database.

7 Program line number

8 0

9 Mode number DBOPEN-mode parameter value (same as
bits 12 through 15 of element 6).

10 Any value Reserved.

Array
Element

Value Description

67

Database Manipulation
The DBCLOSE Statement

The DBCLOSE Statement

DBCLOSE terminates access to the specified database.

 DBCLOSE (base name, data set, mode, status)

The parameters are:

base name The same string variable used when opening the database.

data set Any string or numeric expression.

mode A numeric expression equal to 1 or 3.

status An integer array variable that returns status information after
DBCLOSE is executed. The array must contain at least ten ele-
ments in its right-most dimension.

DBCLOSE Modes

Two modes are available when closing a database.

Mode 1: Close the database. The database described is closed, the memory seg-
ment assigned by DBOPEN is released, and the first two bytes of the base name
parameter are reset to blanks. The data set parameter is ignored.

Mode 3: Data set rewind. The specified data set pointer is reset to the first item in
the set.

DBCLOSE Status Array

A DBCLOSE error assigns a non-zero condition word (CW) to the first element of
the status array. A list of all CW values and their meanings appears in page 197 .
The following table describes the status array contents after a successful
DBCLOSE.

Array Element Value Description

1 0 CW.

2 through 4 Unchanged

5 0

68

Database Manipulation
The DBCLOSE Statement

The execution of certain system commands causes an implicit DBCLOSE to be
performed. For example, the RUN and SCRATCH C commands perform a
mode 1 DBCLOSE on all databases currently opened by the user. This terminates
access to the database until a DBOPEN is executed. The following list of state-
ments and keys perform an implicit DBCLOSE in mode 1.

STOP or END

RUN

SCRATCH C

SCRATCH A

CTRL Y *

QUIT

QQUIT

* CTRL Y performs an implicit DBCLOSEonly in the run-time version of Elo-
quence (not the development version).

6 403 The DBCLOSE identification
number.

7 Program line number

8 0

9 Mode number The mode parameter value.

10 Any value Reserved.

Array Element Value Description

69

Database Manipulation
The DBGET Statement

The DBGET Statement

DBGET reads the specified data set entry into a string variable.

 DBGET (base name, data set, mode, status, list, buffer, argument)

The parameters are:

base name The same string variable used when opening the database.

data set Either a string expression containing a left-justified data set
name or a numeric expression containing a data set number cor-
responding to the data set’s position in the schema definition.

mode A numeric expression equal to 1, 2, 3, 4, 5, 6, 7, 15, 16.

status An integer array variable that returns status information after
DBGET is executed. The array contains at least ten elements in
its right-most dimension.

list A string expression containing @\triangle or @; or @ ($\tri-
angle$ represents a space). This value means that only the
entire entry can be accessed and is referred to as the full record
mode.

buffer A simple string variable in which DBGET returns the specified
record entry. The maximum buffer length must equal or exceed
the data-set entry length.

argument Direct access (mode 4)—A numeric expression representing a
record number. Calculated access (mode 7)—An expression of
the same data type as the master data set’s search item.

DBGET Modes

DBGET is used to read entries from the various data sets in a database. The mode
parameter determines the type of access requested—serial, directed, chained, or
calculated.

Mode 1: Reread. DBGET retrieves the current record. The value of the argument
parameter is ignored for this mode.

Mode 2: Serial read, forward. DBGET serially retrieves the record after the cur-
rent record. The retrieved record becomes the current record. The value of the
argument parameter is ignored for this mode.

70

Database Manipulation
The DBGET Statement

Mode 3: Serial read backwards. DBGET serially retrieves the record before the
current record. The retrieved record becomes the current record. The value of the
argument parameter is ignored for this mode.

Mode 4: Directed read. DBGET examines the record located at the address con-
tained in the argument parameter. If the record is not empty, the entry is copied
into the buffer. An error condition is returned in the first word of the status array if
the record is empty.

Mode 5: Chained read, forward. The first or next entry of the current chain of
the specified detail set is read. DBFIND is used to set the current chain pointer for
a detail data set.Indexed read, forward. DBGET retrieves the first or next entry
in index order. DBFIND on index item is used to define current index. DBGET
will fail with end-of-chain condition if no more entries with search value as given
by DBFIND could be found.

The value of the argument parameter is ignored for this mode.

Mode 6: Chained read, backward. The last or previous entry of the current
chain of the specified detail set is retrieved. DBFIND is used to set the current
chain pointer for a detail data set.Indexed read, backward. DBGET retrieves the
last or previous entry in index order. DBFIND on index item is used to define cur-
rent index. DBGET will fail with end-of-chain condition if no more entries with
search value as given by DBFIND could be found.

The value of the argument parameter is ignored for this mode.

Mode 7: Calculated read. This mode is used with master data sets only. The
entry with a search item value matching the argument parameter is copied into the
buffer. If the search item is numeric, the numeric argument will be converted to
the proper type (integer, dinteger, short, or real) before the calculated read is per-
formed.

Mode 15: Next entry in index order. DBGET reads the first or next entry in cur-
rent index order. DBFIND on index item is used to establish the current index.
The value of the argument parameter is ignored for this mode.

Mode 16: Previous entry in index order. DBGET reads the last or previous
entry in current index order. DBFIND on index item is used to establish current
index. The value of the argument parameter is ignored for this mode.

Eloquence DBMS supports the full record mode of data transfer (list equals @;
@). Thus, in all modes, the data items read are those which represent the entire
data entry.

71

Database Manipulation
The DBGET Statement

DBGET Status Array

A DBGET error assigns a non-zero conditional word (CW) to the first element of
the status array. A list of all CW values and their meanings appears in page 197 .
The following table describes the status array contents after a successful DBGET.

For a detail data set, the forward and backward addresses are always updated rela-
tive to the path established by the previous DBFIND applied to the data set.

Array element 8 and 10 will be zero if retrieving in index order.

Record numbers, chain lengths, and forward and backward record addresses fall
into the range of 1 through 229−1.

Array
Element

Value Description

1 0 CW.

2 Buffer Length Number of words transferred to the buffer.

3 0

4 Record Number Integer number of accessed record.

5 0

6 0 or 1 0 for a detail data set. 1 for a master data set.

7 0

8 Backward
Address

Integer address of the previous record in a chain.

9 0

10 Forward Address Integer address of the next record in a chain.

72

Database Manipulation
The DBUPDATE Statement

The DBUPDATE Statement

DBUPDATE modifies item values in a data entry.

 DBUPDATE (base name, data set, mode, status, list, buffer)

The parameters are:

base name The same string variable used when opening the database.

data set Either a string expression containing a left-justified data set
name or a numeric expression containing a data set number cor-
responding to the data set’s position in the schema definition.

mode A numeric expression equal to 1.

status An integer array variable that returns status information after
DBUPDATE is executed. The array must contain at least ten
elements in its right-most dimension.

list A string variable containing @\triangle or @; or @ ($\trian-
gle$ represents a space). This value means that only entire
records can be accessed and is referred to as the full record
mode.

buffer A simple string variable containing data that is to replace the
current data entry in the specified set.

Since search items cannot be updated, the search item value must match the
present buffer value for that item. Before updating a data entry, DBUPDATE must
be preceded by a DBGET or DBPUT to establish the current record pointer.

The data item values of the current data entry are replaced using the data supplied.
Since data is only transferred in the full record mode, the buffer must contain all
the values for the items contained in the data set entry. The search item values in
the buffer must match the old values of the current record or the update is not per-
formed.

DBUPDATE Status Array

A DBUPDATE error assigns a non-zero conditional word (CW) to the first ele-
ment of the status array. A list of all CW values and their meanings appears in
page 197 . For a successful DBUPDATE, the status array contents are as
described under DBGET, except that the second element represents the number of
words transferred from the buffer to the data set.

73

Database Manipulation
The DBPUT Statement

The DBPUT Statement

DBPUT adds new data entries to a manual or detail set.

 DBPUT (base name, data set, mode, status, list, buffer)

The parameters are:

base name The same string variable used when opening the database.

data set Either a string expression containing a left-justified data set
name or a numeric expression containing a data set number cor-
responding to the data set’s position in the schema definition.

mode A numeric expression equal to 1.

status An integer array variable that returns status information after
DBPUT is executed. The array must contain at least ten ele-
ments in its right-most dimension.

list A string variable containing @\triangle or @; or @ ($\trian-
gle$ represents a space). This value means that only entire
records can be accessed and is referred to as the full record
mode.

buffer A simple string variable containing data that is to be placed into
the specified set.

The buffer parameter must contain values for all items in the data entry to be
added. Eloquence DBMS determines the physical record placement of the entry
within the data set.

When the data set is a manual-master data set, Eloquence DBMS verifies that no
existing data entry has a search item value identical to the new data entry. If this
test fails, an error condition is returned in the status array; otherwise, the new data
entry is added.

When the data set parameter is a detail data set, Eloquence DBMS verifies the fol-
lowing:

• The related manual-master data sets have entries with search item values that match the
corresponding detail search item values.

• All necessary entries in the related automatic-master data sets are present.

74

Database Manipulation
The DBPUT Statement

If any of these tests fail, an error condition is returned in the first element of the
status array. Otherwise, the data entry is added to the detail data set with Elo-
quence DBMS performing all linkage maintenance and, when necessary, creating
entries in the automatic-master data sets.

Eloquence DBMS determines the physical location of the entry within the data
set. If the detail data set is related to one or more master data sets, however, the
entry is logically linked to the end of each chain.

Data may not be added directly (DBPUT) to automatic masters. Data is added or
deleted automatically as detail data set entries are added or deleted.

NOTE: Even though entries might have been put into the database in sequence, there is no
guarantee they will appear in this sequence in the database.

DBPUT Status Array

A DBPUT error assigns a non-zero conditional word (CW) to the first element of
the status array. A list of all CW values and their meanings appears in page 197 .
For a successful DBPUT, the status array contents are as described under DBGET,
except that the second element represents the number of words transferred from
the buffer to the data set.

75

Database Manipulation
The DBDELETE Statement

The DBDELETE Statement

DBDELETE deletes existing data entries in a manual-master or detail data set.

 DBDELETE (base name, data set, mode, status)

The parameters are:

base name The same string variable used when opening the database.

data set Either a string expression containing a left-justified data set
name or a numeric expression containing a data set number cor-
responding to the data set’s position in the schema definition.

mode A numeric expression equal to 1.

status An integer array variable that returns status information after
DBDELETE is executed. The array must contain at least ten
elements in its right-most dimension.

When deleting entries from master data sets, all pointer information for chains
indexed by the entry must indicate that the chains are empty. In other words, there
must not be any detail entries on the paths defined by the master which have the
same search item values as the master entry to be deleted.

When deleting detail set entries, Eloquence DBMS performs the required changes
to chain linkages and other chain information, including the chain heads in related
master data sets. If the last member of each detail chain linked to the same auto-
matic master has been deleted, Eloquence DBMS also deletes the master entry
containing the chain heads.

DBDELETE Status Array

A DBDELETE error assigns a non-zero conditional word (CW) to the first ele-
ment of the status array. A list of all CW values and their meanings appears in
page 197 . The following table describes the status array contents after a success-
ful DBDELETE.

Array Ele-
ment

Value Description

1 0 CW.

76

Database Manipulation
The DBDELETE Statement

2 Record length Data set record length in words.

3 0

4 Record Number Address of deleted record.

5 0

6 0

7 0

8 Backward Address The unchanged backward address of a chain.

9 0

10 Forward Address The unchanged forward address of a chain.

Array Ele-
ment

Value Description

77

Database Manipulation
The DBFIND Statement

The DBFIND Statement

DBFIND is a dual-purpose statement: DBFIND is used with detail data sets, and
locates the head of a chain in a master data set whose search-item value is identi-
fied by the argument parameter.

DBFIND is used with indexed access and establishes current index and locates
matching value in index table.

 DBFIND (base name, data set, mode, status, item, argument)

The parameters are:

base name The string variable used when opening the database.

data set Either a string variable containing a left-justified data set name
or a numeric variable containing a data set number correspond-
ing to the data set’s position in the schema definition.

mode A numeric expression equal to 1, 2, 3, 4, 5.

status An integer array variable that returns status information after
DBFIND is executed. The array must contain at least ten ele-
ments in its right-most dimension.

item A string expression containing a left-justified search item or
index item name, or a numeric expression containing a search
item or index item number. The search item number represents
the relative position in the (index item part) schema definition
starting with the number of defined items plus 1; search item or
index item numbers are integers ranging from 1 to 1024.

argument Contains a value for the search item or index item to be used.

DBFIND Modes

DBFIND is used to establish current chain or current index. The mode and item
parameters determine the type of access requested - chained or indexed.

Mode 1: Find chain head. If the item refers to a search item (an item linked to a
master set in schema definition), DBFIND will set up the current chain and locate
the chain head. The specified search item defines the path to which the chain
belongs. Thedata set parameter must reference a detail data set. DBFIND uses
the argument value to locate the desired chain head in the master data set (using

78

Database Manipulation
The DBFIND Statement

calculated access). The argument and the search item data types must match.
DBFIND converts numeric arguments to the search item numeric data type during
execution.

First matching record. If an item refers to an index item, DBFIND will set up
the current index and locate the first matching value in the index. If the argument
is an empty string, the first record (in index order) will be located. (See discussion
below on comparison between modes 1 and 2.)

Mode 2: First matching record. Theitem parameter must refer to an index item.
DBFIND will set up the current index and locate the first matching value in the
index. If the argument is an empty string, the first record (in index order) will be
located.

Mode 3: Last matching record. Theitem parameter must refer to an index item.
DBFIND will set up the current index and locate the last matching value in the
index. If the argument is an empty string, the last record (in index order) will be
located.

Mode 4: Find first matching record with matching regular expression. The
item parameter must refer to an index item. DBFIND will set up the current index
and locate the first matching value in the index. The index item must contain at
least one leading string segment.

The given expression must describe the leading string segments exactly. There is
no implicit ‘*’ at the end (as in DBFIND Modes 2/3). If you store “AAA ” (trail-
ing space), in an entry, you won’t find it using a value of “AAA”, but you will find
it if you use “AAA*” or “AAA?”.

The entries will be retrieved using DBGET Mode 5/6 in index order.

Mode 5: Find last record with matching regular expression. Same as Mode 4,
but locates thelast entry.

79

Database Manipulation
The DBFIND Statement

NOTE: Access time depends on the regular expression given. We do not recommend specifying a
character class or a wildcard character at the beginning of the regular expression, as this
would result in a serial access to specified data set.

NOTE: Status may return to 0 in the first status array element, although there is no matching entry
in the dataset. A subsequent DBGET will return 15 (end-of-chain) in the first status array
element.

Chained Access

DBFIND verifies that the item parameter references a search item for the specified
detail data set. It then locates the appropriate master data set entry whose search
item value (or key) matches the value of the argument parameter. The internal sta-
tus information relative to the data set parameter is adjusted in anticipation of sub-
sequent chained references to that same data set (DBGET, modes 5, 6.). Note that
DBFIND does not retrieve data entries; it simply establishes the current record
pointer.

Indexed Access

DBFIND verifies that theitem parameter references an index item for the speci-
fied data set. It then locates the argument value in the appropriate index. If the
argument parameter is an empty string, this is simply the first or last record (in
index order). If a matching value cannot be found, the record pointer will be
located at the position in the index where the requested value would be inserted.

The numeric argument may be given as a string value independent of index item
definition. String value must be set up by PACK USING statement. It is valid to
give a shorter search value for a string item. DBFIND will locate the first (or last)
entry with matching value. If numeric items are truncated they will be ignored in
locating index position.

If the first part of the index item referenced by theitem parameter is numeric then
theargument parameter may be numeric. DBFIND converts numeric arguments
to the item numeric data type during execution. Only the first item is significant in
locating index position.

80

Database Manipulation
The DBFIND Statement

DBFIND/DBGET modes with indexed access

Mode 1 v. Mode 2

DBFIND mode 1 and mode 2 both locate the first matching record. DBFIND
mode 1 will return status array elements 6, 8, 10, while DBFIND mode 2 will not
(they are zero). DBFIND mode 1 using index item is a convenient way to extend a
master/detail database design without changing your programs. (Note that
DBGET in index order will not return status elements 6 or 8.) But this has a great
disadvantage: it results in the data set entries being read twice, the first time to
locate first/last record address and number of records, the second time if you
retrieve the data using DBGET.

NOTE: Do not use DBFIND mode 1 on index items if you are expecting a large number of data set
entries.

DBFIND Status Array

A DBFIND error assigns a non-zero conditional word (CW) to the first element of
the status array. A list of all CW values and their meanings appears in page 197 .
The following table describes the status array contents after a successful
DBFIND.

DBFIND
mode

 DBGET
mode

 Relation Comment

2 5 equal first record with matching
index value

2 6 end-of-chain

2 15 equal/greater

2 16 less last record before matching
index volume

3 5 end-of-chain

3 6 equal last record with matching index
value

3 15 greater first record after matching
index value

3 16 less/equal

81

Database Manipulation
The DBFIND Statement

Status array elements 6, 8, 10 are zero in DBFIND modes 2 and 3.

Regular Expressions

Elements:

[starting delimiter of character class expression

] ending delimiter of character class expression

! negation expression (only as 1st character of character class)

- range expression (only inside a character class)

? any character

* any string (including the empty string)

numeric character (same as [0-9])

The backslash character (\) loses its special meaning within the
delimiters, except in the following combinations:

Array Ele-
ment

Value Description

1 0 CW.

2 0

3 0

4 0

5 0

6 Chain Length Integer count of entries in the
current chain.

7 0

8 End of Chain
Address

Integer address of the last record
in the chain.

9 0

10 Chain Head
Address

Integer address of the first record
in the chain.

82

Database Manipulation
The DBFIND Statement

\b - becomes backspace

\t - becomes tab

\r - becomes cr

\n - becomes lf

\f - becomes ff

\s - becomes space

The above combinations conform to the HP-UX standard, and are
extremely practical.

Evaluation An evaluation is only possible with index items, and then only for
leading string segments. Index items without leading string segments cannot be
accessed.

A regular expression must exactly describe the contents of the leading string seg-
ments. There is no implicit “*” at the end (as in DBFIND 2/3). For example, the
value “AAA ”(trailing space) does not match the search expression “AAA”.

Examples of regular expressions:

A[BCD] Index value starts with A, followed by either a B, C or D.

BOB?* Index value starts with BOB, followed by at least one character.

83

Database Manipulation
The DBINFO Statement

The DBINFO Statement

DBINFO provides database structural information from the root file and does not
access information within the data sets.

 DBINFO (base name, qualifier, mode, status, buffer)

The parameters are:

base name The same string variable used when opening the database.

qualifier A variable that references a data set, data item, or volume either
by name or number (see the following tables).

mode A numeric expression specifying the type of information to be
returned.

status An integer array variable that returns status information after
DBINFO is executed. The array must contain at least ten ele-
ments in its right-most dimension.

buffer A string variable long enough for the requested information to
be returned. The contents of the buffer varies according to the
mode parameter used.

The various types of information requests are divided into four categories—data
sets, data items, data paths, (for example, relationships between data sets), and
data set volumes. In all cases, the information supplied is dependent on the access
mode used and is restricted by the user-class number established when the data-
base was opened. Any data sets or data paths in the database which are inaccessi-
ble to that specific user class are considered to be nonexistent by DBINFO.

For each mode, the information is returned to the buffer as a word string. Some of
the string information may actually represent numeric data. The UNPACK state-
ment, described in page 179 , provides a means of properly interpreting these val-
ues. The following tables describe the results associated with a successful
execution of DBINFO (Conditional word equal to 0).

84

Database Manipulation
The DBINFO Statement

DBINFO Modes Returning Data-Path Information

Mode Purpose Qualifier Buffer Contents Comments

101 Identifies the
data-item
number for a
given data
item.

Data item
name or
number.

Word 1 Data-item
number.

Integer.

102 Describes a
specific data
item.

Data item
name or
number.

Words
1-8

Word 9
10

11

12
13

Data-item-
name.

Data-type.
Item-word
length.
Sub-item
count.
0
Control num-
ber.

Left-justified
and filled with
blanks.
(L,S,I,X)
Integer.

Integer.

Integer.
Integer.

103 Identifies all
data items in
database

(ignored) Word 1
Word
2... n+1

n
Data-item
number
...

n = number of
data items
listed.
All words are
integers

104 Identifies all
data items in
a specific
data set. The
data items
are listed in
order of
occurrence in
the data
entry.

Data set-
name or
number.

Word 1
Word
2 ... n+1

n
Data-item
number
...

n = number of
data items
listed.
All words are
integers.

85

Database Manipulation
The DBINFO Statement

DBINFO Modes Returning Dataset Information

Mode Purpose Qualifier Buffer Con-
tents

Comments

201 Identifies a
data-set
number for a
given data
set.

Data set
name or
number.

Word 1 Data set
number.

If positive, entries-
can be read only.
If negative, entries
can be read, writ-
ten or modified.

202 Describes a
specific data
set.

Data set
name or
number.

Words 1-8

Word 9

10

11
12
13
14 & 15

16 & 17

Data set
name.
Set
type.
Entry
word-
length.
0
0
0
Number
of data
entries.
Data-set
capacity.

Left-justified and-
filled with blanks.
(M,A,D)

Words 10-17
are four-byte
integers.

-202 Describes a
specific data
set.

(Same
as mode
202.)

(Same
as mode
202.)

(Same
as mode
202.)

This is the same as
mode 202, how-
ever it is processed
locally (without
contacting the
database server)
and the entry
count is always
zero.

86

Database Manipulation
The DBINFO Statement

DBINFO Modes Returning Data-Item Information

203 Identifies all
accessible
datas ets in
the data-
base. The
sets are listed
in the order
of their
occurrence in
the schema.

(Ignored) Word
12...n+1

n number of acces-
sible datasets in
database.
Arranged in data-
set number order.
If positive, the
data set can be read
only. If negative,
the data set can be
read, written or
modified. All
words are integers.

204 Identifies all
accessible
datasets
which con-
taina spe-
cific data
item.

Data-
item name
or num-
ber.

(Same as
mode
203.)

(Same
as mode
203.)

(Same as mode
203.)

Mode Purpose Qualifier Buffer Con-
tents

Comments

87

Database Manipulation
The DBINFO Statement

DBINFO Modes Returning Index-Item Information

Mode Purpose Qualifier Buffer Contents Comments

301 Identifies
paths
defined
for a speci-
fied data
set.

Data-set-
name or
number.

Word 1
2

3

4
............
3n−1

3n

3n+1

n
Data-set num-
ber.
Search item-
number.
0
............
Data-set num-
ber.
Search item-
number.
0

n = Number of
paths. Repeat for
each path. If quali-
fier refers to mas-
ter, set number is
for detail. If quali-
fier refers to detail,
set number is for
master. Item num-
bers identify items
in detail set. Path
designators pre-
sented in order of
their appearance in
schema. All words
are integers.

302 Identifies
a search
item for
specified-
data set.

Master
data-set
name or
number.
OR
Detail
data-set
name or
number

Word 1

2
Word 1

2

Search-item-
number.
0
Search-item-
number.
Data-set num-
ber.

Search-item num-
ber in master set.
All words are inte-
gers. First search
item defined in the
detail data set.All
words are integers.

Mode Purpose Qualifier Buffer Contents Comments

501 Identifies the
index-item
name or
number.

index-
item name
or num-
ber.

Word 1 Index-item-
number.

Integer.

88

Database Manipulation
The DBINFO Statement

DBINFO Status Array

A DBINFO error assigns a non-zero conditional word (CW) to the first element of
the status array. A list of all CW values and their meanings appears in page 197 .
The following table describes the status array contents after a successful
DBINFO.

502 Describes a
specific
index item.

Index-
item name
or num-
ber.

Word 1-8

Word 9

Word 10

Word 11

Word
n2*n+9…
Word
2*n+10

Index-item-
name.
Segment
count.
Item num-
ber.
Item length.

Left-justified and
filled with blanks.
Integer.
Integer.
Integer.

All words are
integers.

503 Identifies all
index items
in database

(ignored) Word 1
Word
2 ... n+1

n
Index-item
number

n = number of
index items
listed. All words
are integers

504 Identifies all
index items
in a specific-
data set. The
items are
listed in
order of
occurrence in
the data set.

Data-set
name or
number.

Word 1
Word
2 ... n+1

n
Index-item
number.

n = number of
index items
listed. All words
are integers.

Array
Element

Value Description

1 0 CW.

Mode Purpose Qualifier Buffer Contents Comments

89

Database Manipulation
The DBINFO Statement

2 Buffer Length Number of words transferred to the buffer.

3 0

4 Unchanged

5 0

6 Bits 0 through 11 The DBINFO identification number 402.

Bits 12 through 15 The mode value used to open the database.

7 Program line number

8 0

9 Mode number The mode parameter value.

10 Any value Reserved.

Array
Element

Value Description

90

Database Manipulation
The DBEXPLAIN$ function

The DBEXPLAIN$ function

The DBEXPAIN$ function returns a error description for a given status array or
error number.

 DBEXPLAIN$()

Examples:

Err_msg$=DBEXPLAIN$(S(*))

Err_msg$=DBEXPLAIN$(-803)

Status Array

Numeric value

91

Database Manipulation
Transactions

Transactions

The Eloquence A.06.00 data base provides transactions. Transactions are used to
ensure data base integrity. After a DBBEGIN statement, all data base modifica-
tions are no longer stored permanently in the data base. A subsequent DBCOM-
MIT statement is required to make any pending operations permanent in the
database.

The DBROLLBACK statement provides a rollback operation, that reverts pend-
ing database operations. After a successful (top level) commit, the transaction is
guaranteed to be present in the data base, even in case of a server crash. So it can
be guaranteed, that either all dependend operations are saved entirely or no modi-
fications are done.

Pending data base changes are neither visible to other users nor can they be
changed concurrently. All pending data base records are locked automatically by
the data base server and any attempt to modify them will cause the concurrent task
to become paused.

Transactions can be nested. The DBCOMMIT or DBROLLBACK statements
usually operate on the last (sub-) transaction. Data base modifications are not
stored permanently in the data base, until a top level DBCOMMIT is executed.
The DBROLLBACK statement can be used to undo all pending modifications
until a specific checkpoint.

Please note, that the transaction handling statements do not operate on a particular
data base. Instead they operate on all data bases at once. A pending commit or
rollback is even performed after closing the data base. In case a data base server
connection is lost (for example, because the server has been killed), all pending
modifications on all data bases are automatically reverted.

Each transaction gets a unique is assigned with the DBBEGIN statement and a
name of this transaction can be defined to address this transaction later on.

The DBBEGIN Statement

The DBBEGIN statement begins a new (sub-) transaction. When this is the first
transaction, it is called top level transaction. No modifications are permanently
saved in the Eloquence database until the top level transaction is committed. A
subsequent DBBEGIN begins a new subtransaction, which can be controlled sep-
arately with the DBCOMMIT and DBROLLBACK statements.

92

Database Manipulation
Transactions

Up to 20 transactions can be nested. Each DBBEGIN statement returns a unique
(process specific) transaction id, which can be used with the DBROLLBACK
statement to revert all modifications until this state.

 DBBEGIN(comment, mode, status(*))

The parameters are:

comment A string variable containing a comment which can be used to
give this transaction a name. The name is optional and can be
empty.

mode A numeric expression equal to 1.

status An integer array variable that returns status information after
DBOPEN is executed. The array must contain at least ten ele-
ments in its right-most dimension.

The DBCOMMIT Statement

The DBCOMMIT statement commits a transaction. If this is a top level transac-
tion, modifications are made permanently in the data base. If a subtransaction is
committed, it becomes part of its parent transaction.

 DBCOMMIT (mode, status(*))

The parameters are:

mode A numeric expression equal to:

1 commit all transactions
2 commit top level transaction

status An integer array variable that returns status information after
DBCOMMIT is executed. The array must contain at least ten
elements in its right-most dimension.

Array Ele-
ment

Value Description

1 0 CW.

2 0 Transaction ID

3 0 Transaction Level

93

Database Manipulation
Transactions

The DBROLLBACK Statement

The DBROLLBACK statement is used to undo a pending transaction. If this is a
top level transaction, all pending modifications are reverted. If applied to a sub-
transaction all modifications including the enclosing DBBEGIN statement are
reverted.

 DBROLLBACK (ID, mode, status(*))

The parameters are:

ID Transaction ID, used with mode 2.

mode A numeric expression equal to:

1 Rollback current (sub-)transaction

2 Rollback given transaction

3 Rollback top level transaction

status An integer array variable that returns status information after
the DBROLLBACK is executed. The array must contain at
least ten elements in its right-most dimension.

In Mode 2, a transaction id must be specified which was obtained from DBBE-
GIN. This can be used to revert up to a specific checkpoint.

Array Ele-
ment

Value Description

1 0 CW.

Array Ele-
ment

Value Description

1 0 CW.

3 0 Transaction Level

94

Database Manipulation
The DBLOCK Statement

The DBLOCK Statement

DBLOCK locks all or a part of a database and provides either exclusive write
access or read access which excludes all write access.

 DBLOCK (base name, qualifier, mode, status)

The parameters are:

base name The same string variable used when opening the database.

qualifier A variable which references a data set or a string expression
that describes the lock to be applied (see table below).

mode A numeric expression defining type of lock (see table below).

status An integer array variable that returns status information after
DBLOCK is executed. The array must contain at least ten ele-
ments in its right-most dimension.

DBLOCK locks the section requested if no other user currently has a conflicting
lock. If the lock cannot be granted immediately and a “wait” (odd) mode is used,
the request is placed in a queue to wait for access. Access is granted only after all
conflicting locks ahead in the queue have been granted and released. (Although
the section requested is not locked but is in queue, no other request which would
lock a subsection and hold up the first request is granted. Refer to Database Lock-
ing in page 141).

Even mode numbers request a lock without wait; if the lock cannot be granted
immediately, no lock is made. The reason for the lock failure is indicated in the
condition word of the status array. The request is not queued.

If a program has a lock in effect, additional locks can be made only with even
modes (”no-wait” modes). If additional locks are made with odd modes (”wait”
modes), the “wait” modes are automatically changed to “no-wait” modes. If these

MODES QUALIFIER COMMENTS

1,2,11,12 Ignored. Database level locks.

3,4,13,14 Data set name or number. Data Set level locks.

5,6,15,16 String expression lock descrip-
tor.

General-purpose lock entry level.

95

Database Manipulation
The DBLOCK Statement

“no-wait” modes cannot be granted, a status error is returned. Using “no-wait”
modes prevents successive lock requests from causing a deadlock error. All data-
bases currently opened are checked.

A write lock is exclusive. No other locks may be made on that section. A read
lock may be made on a section that already has a read lock.

Summary of DBLOCK Modes

For example, the following statement requestswithout wait a write lock on the
data set PARTS:

100 DBLOCK (BASE$,”PARTS”,4,STATUS(*))

However, the following statement requestswith wait a read lock on the data sets
and data entries specified in the string formed by the concatenation of the lock
descriptors in P$ and Q$:

110 DBLOCK (Base$,P$&Q$,15,Status(*))

Table 4 Type of Access

Mode Wait Write Read

1 yes Entire database.

3 yes Data set.

5 yes Predicate.

11 yes Entire database.

13 yes Data set.

15 yes Predicate.

2 no Entire database.

4 no Data set.

6 no Predicate.

12 no Entire database.

14 no Data set.

16 no Predicate.

96

Database Manipulation
The DBLOCK Statement

DBLOCK Status Array

A DBLOCK error assigns a non-zero conditional word (CW) to the first element
of the status array. A list of all CW values and their meanings appears in page 197
. The following table describes the status array contents after a successful
DBLOCK.

Table 5 Type of Access

Array
Element

Value Description

1 Conditional Word 0 for successful lock.

2 Descriptor Number Number causing failure.

1 For successful lock in modes 1 through 4.

3 0 If CW=20, database locked.

1 If CW=20, data set or data entries locked.

4 Reserved

5 0

6 Bits 0 through 11 The DBLOCK identification number 409.

Bits 12 through 15 The mode value used to open the database.

7 Program line number

8 0

9 Mode number The mode parameter value.

10 Any value Reserved.

97

Database Manipulation
The DBUNLOCK Statement

The DBUNLOCK Statement

DBUNLOCK release all locks for a database or release a specific lock as specified
by the qualifier argument.

 DBUNLOCK (base name, qualifier, mode, status)

The parameters are:

base name The same string variable identifying the database name when
the database was opened.

qualifier Defines which specific lock will be released.

mode A numeric expression equal to 1.

status An integer array variable that returns status information after
DBUNLOCK is executed. The array must contain at least ten
elements in its right-most dimension.

DBUNLOCK mode relinquishes locks to all sections of the database previously
acquired by DBLOCK. If DBUNLOCK is executed at a time when the user does
not have a lock, no error is returned.

The following DBUNLOCK mode values are supported:

Mode UNLOCK Operation

1 Unlock database. All locks for the database are released.

3 Unlock dataset. A lock mode 3/4/13/14 is released. The quali-
fier argument must match the DBLOCK argument.

5 Unlock predicate. A lock mode 5/6/15/16 is released. The qual-
ifier argument must match the DBLOCK argument.

In addition to the "official" modes above, DBUNLOCK also accepts and trans-
lates the following mode values:

Mode 2/11/12 is mapped to 1
Mode 4/13/14 is mapped to 3
Mode 6/15/16 is mapped to 5

This makes it possible to use the same DBLOCK and DBUNLOCK modes.

98

Database Manipulation
The DBUNLOCK Statement

DBUNLOCK Status Array

A DBUNLOCK error assigns a non-zero conditional word (CW) to the first ele-
ment of the status array. A list of all CW values and their meanings appears in
page 197 . The following table describes the status array contents after a success-
ful DBUNLOCK.

Conflicting Item lock resolution

The LOCK CONFLICTING ITEM configuration directive makes it possible to
configure, how predicate locks with conflicting items are resolved.

Former Eloquence revisions rejected a predicate lock with a conflicting item,
because this could lead to a situation, where two processes own a lock on an over-
lapping subset of data. If LOCK CONFLICTING ITEM is set to 1, predicate
locks with conflicting items are granted. However any write attempt to data where
another process owns a lock will result in a status error -12.

Please refer to the Eloquence configuration section for further information.

Table 6 Type of Access

Array
Element

Value Description

1 Conditional word 0 for successful unlock.

2 through 4 Unchanged

5 0

6 Bits 0 through 11 The DBUNLOCK identification number
410.

7 Program line number

8 0

9 Mode number The mode parameter value.

10 Any value Reserved.

99

Database Manipulation
Advanced Access Statements

Advanced Access Statements

Two advanced access statements are described on the following pages. These
statements facilitate the use of the Eloquence programming statements discussed
earlier by loading or unloading information during DBGET, DBPUT, or DBUP-
DATE execution.

The DBASE IS Statement

The DBASE IS statement defines the database to be referenced by subsequent IN
DATA SET and WORKFILE IS statements. WORKFILE IS is used in conjunc-
tion with the FIND and/or SORT statements.

 DBASE ISbase name

The parameter is:

base name The same string variable identifying the database name when
the database was opened.

DBOPEN must be executed prior to executing the DBASE IS statement. The
database being referenced is reset either by specifying another DBASE IS state-
ment or by closing the referenced database in mode 1.

The IN DATA SET Statement

Through IN DATA SET, data may be automatically transferred from program
variables to the buffer variable prior to DBPUT and DBUPDATE. Data may also
be automatically transferred from the buffer to program variables after DBGET.

 IN DATA SETdata set [IN COM] USE REMOTE LISTSline id list

 IN DATA SETdata set LIST item list

 IN DATA SETdata set LIST item list FREE

 IN DATA SETdata set USE STRUCTInstance name

IN DATA SET data set IN COM[]

USE ALL

USE item list

DIM ALL

100

Database Manipulation
Advanced Access Statements

 IN DATA SETdata set DEFINE TYPE type name

The parameters are:

data set Either a string expression containing a left-justified data set
name or a numeric expression containing a data set number cor-
responding to the data set position in the schema definition.

item list A group of numeric, string, or array variables used to associate
data items to Eloquence variables. If there are more items in the
schema entry than variables in the list, the extra items are
skipped. This can also be done by specifying SKPn in the item
list, wheren is the number of items you want to skip, ornX,
wheren is the number of bytes you want to skip (see PACK-
FMT). Note that you have to skip entire items. The variable
names must be in the order as defined by the schema definition,
and must be separated by commas.

line id list A list of line numbers or line labels separated by commas.

During IN DATA SET execution, the data set must be a member of the database
recently referenced through DBASE IS. Once the item list has been established
for a data set, the default database may be changed through DBASE IS. The cor-
rect data-set/data-base relationship is maintained during DBGET and DBUP-
DATE operations.

In the USE ALL mode, all program variables are searched for a match against the
data set’s item names, as stored in the root file. Before a match can be determined
the schema names undergo the following conversion:

• All letters except the first one are converted to lowercase.

• All dashes (-) are converted to underscores (_).

• If the schema item is a string, a dollar sign ($) is appended to the name.

NOTE: Item names containing native language characters (for example, Ae and E^) arenot allowed
as variable names; therefore, they are not automatically converted and cannot be accessed.

The converted schema name is then compared against all program variables. In
addition to a name match, a match must exist for the following:

• The data item types.

• The dimension types (simple or one-dimensional array).

• In the case of strings, the maximum string length.

101

Database Manipulation
Advanced Access Statements

If the variable was not previously defined during program execution, it will be
dimensioned according to the schema item definition.

If all of these conditions are satisfied, the program variable is automatically
updated when a data set entry is read into the buffer by DBGET. Before an entry is
added (DBPUT) or modified (DBUPDATE), data is automatically copied from the
program variable to the buffer.

DIM ALL, like USE ALL, establishes a relationship between program variables
and matching data set item names. If a match is not found, however, the data set’s
field is not treated as a skip field, as with the USE ALL mode. Instead, a variable
is automatically created within the program with attributes (field type and length)
and name matching the corresponding data item.

If an item list is specified, the variables in the list must exactly match the type and
length of the corresponding fields in the referenced data set. Comparisons are
made on a positional basis; that is, the first data set field is compared to the first
variable in the list, the second field to the second variable and so on.

The SKP option may be used to skip unwanted fields. To skip two or more fields
in a row, an appended integer may be used (SKP2 or 10X). This option is useful
where only selected fields of a data set entry need to be accessed. Skipped fields
are not modified by DBUPDATE and are assigned a null value by DBPUT. If a
particular value is desired in a skipped field, this value can be assigned to the
string before the DBPUT or DBUPDATE. Note that assigning a value to the
buffer string does not change the value of the program variables specified in the
IN DATA SET statement.

USE REMOTE LISTS is a means of referencing item lists that appear in other
program lines. The lines referenced in the line id list (either by number or label)
contain the actual item list. The item lists are evaluated in the order of the line id
list. This option is a method of extending an item list length beyond the maximum
program line length of 500 characters.

If the IN COM option is selected, an IN DATA SET statement executed in the
main program remains active across all subprograms and functions. IN COM may
be used with any of the previously described IN DATA SET options. However, all
variables referenced must be explicitly dimensioned in common. This option can
only appear in the main program, and not in subprograms or functions.

The FREE option releases the internal relationship between the data set and the
program variables. Data is no longer transferred to and from the program vari-
ables. FREE is necessary only if the IN COM option is used in the main program
and another link is desired. Otherwise FREE is implied with IN DATA SET.

102

Database Manipulation
Advanced Access Statements

DEFINE TYPE is used with user defined types to define a new type from a data
set. The type name must not already been defined.

USE STRUCT is used with user defined types to bind the items in data set to the
member variables. The specified variable must have been deimensioned.

For example:

DBOPEN(Db$,"",1,S(*))

 ...

 IN DATA SET "CUSTOMER" DEFINE TYPE Tcust

 NEW Cust:Tcust

 IN DATA SET "CUSTOMER" USE STRUCT Cust

 ...

 DBGET(Db$,"CUSTOMER",7,S(*),"@",Buf$,Key$)

 ...

Of course, types can also be defined statically in your program:

 TYPE Tcust
 DIM No$[6]
 DIM Name$[30]
 ...
 END TYPE
 DIM Cust:Tcust
!
 DBOPEN(Db$,"",1,S(*))
 ...
 IN DATA SET "CUSTOMER" USE STRUCT Cust
 ...
 DBGET(Db$,"CUSTOMER",7,S(*),"@",Buf$,Key$)
 ...

NOTE: Care must be taken when executing DBGET to establish the current record pointer for
DBUPDATE. Since IN DATA SET automatically transfers the contents of the buffer to
program variables during DBGET, these variables must be updated following the DBGET
operations.

103

Database Manipulation
The PREDICATE Statement

The PREDICATE Statement

PREDICATE is provided as an aid in setting up predicate strings. It sets up the
qualifier parameter that defines the database entries to be locked via DBLOCK.

 PREDICATEpredicate FROMset1[,item1][,relop,value]] [;set2...[;setn..]]

The parameters are:

predicate A string variable returned by PREDICATE and used as the
qualifier parameter in DBLOCK.

set1 A string expression specifying the data set to be locked or
unlocked.

item1 A string expression specifying the data item within set1 to be
locked.

relop A string expression containing a relational operator:= or EQ,
>= or GE, <= or LE

value A string or numeric expression giving the value of the item to
be locked.

set2... A second set of expressions defining the next lock descriptor.

setn... The nth set of expressions defining the next lock descriptor.

Predicate does no type-checking on the value parameter. The programmer should
be careful to match string values with database items or string type and numeric
values with database items of numeric type. Any discrepancies will result in a sta-
tus error from DBLOCK. Blanks within item names and set names are ignored.
Where multiple descriptors are specified, the descriptor blocks appear in reverse
order in the predicate string.

Each of the following examples defines a predicate to request a lock of all data
entries in data set TRANS having a data item value of 100:

100 PREDICATE P$ FROM ”TRANS”,”PART-NO”,”=”,”100”

100 Set$=”TRANS”
110 Item$=”PART-NO”
120 Relop$=”=”
130 Value=100
140 PREDICATE P$ FROM Set$, Item$, Relop$, Value

The following statement requests a lock on data sets TRANS and INVENTORY
(the @ specifies the entire data set):

104

Database Manipulation
The PREDICATE Statement

100 PREDICATE Q$ FROM ”TRANS”, ”@”, ”INVENTORY”, ”@”

The following statement requests a lock on all values of PART-NO greater than or
equal to 100 in every data set where PART-NO occurs:

100 PREDICATE Q$ FROM ”@”, ”PART-NO”, ”>=”, 100

NOTE: Numeric values will be stored as REAL or INTEGER, depending on expression format and
value. INTEGER/DINTEGER will be converted to INTEGER or REAL (depending on
value), SHORT and REAL will be converted to REAL.

105

5

Database Utilities

This chapter describes the Eloquence A.06.00 database utilities. The documenta-
tion of previous database utilities (from former Eloquence) which are no longer
used has been moved to Chapter 6. The documentation is kept so that this manual
is usable with previous Eloquence revisions.

106

Database Utilities
Introduction

Introduction

The Eloquence DBMS utilities create, initialize, and purge database files and per-
form various maintenance operations. The utilities consist of Eloquence com-
mands, in addition to external programs which are executed in the operating
system environment. The database utilities are summarized below:

Table 7 Type of Access

Eloquence
Statements

Programs
which can be
executed from
the OS Env.

 Description

dbvolcreate Creates the database environment.

dbvolextend Extends the database environment.

dbvolchange Modifies database volume parameters.

dblogreset Reset the log volume(s) to minimum size.

dbutil Database Maintenance program. This utility is
used to maintain Eloquence database security.

DBCREATE dbcreate Create data sets and indices from database struc-
ture.

DBERASE dberase Erases data set entries from all or selected data
sets.

DBPURGE dbpurge Purges either specific data set files or the entire
database, including the root file and all data sets.

dbexport Copies data entries from all or selected data sets
to ASCII files. Database structural information is
not saved.

dbimport Copies data entries from ASCII files into data
sets of a database.

107

Database Utilities
The dbvolcreate utility

The dbvolcreate utility

Introduction

The Eloquence databases are stored in a database environment. This environment
consists of database volume files and a server configuration. This database envi-
ronment must be created before the Eloquence database server can be started.

Thedbvolcreate statement creates the main database volume and initializes the
system catalog.

 dbvolcreate [options] volume_file_name

Arguments:

-v Specifying the -v option will cause dbvolcreate to output addi-
tional information during processing.

-d flags Set debug flags. This is used to debug dbvolcreate and is nor-
mally not used.

-c cfg Specifies the server configuration file name.

-s size Initial size (in MB) of the volume to be created. The default
size is 2.5 MB (which is also the minimum size).

-e size Extension size (in MB). When the volume is getting full it will
be extended ofsize MB. If size is 0, the volume will not be
extended automatically by the server. The default size is 1 MB.

-m size Maximum volume size (in MB).

volume_file_nameThe volume will be created with this name.

108

Database Utilities
The dbvolextend utility

The dbvolextend utility

Introduction

The Eloquence databases are stored in a database environment. This environment
consists of database volume files and a server configuration. This database
environment must be created before the Eloquence database server can be
started.The database environment is initialized with thedbvolcreatecommand.

Thedbvolextend statement is used to extend the database environment with addi-
tional volume files. The most common usage of dbvolextend is to create the man-
dantory log volume for the database environment.

 dbvolextend [options] volume_file_name

Arguments:

-v Specifying the -v option will cause dbvolextend to output addi-
tional information during processing.

-d flags Set debug flags. This is used to debug dbvolextend and is nor-
mally not used.

-c cfg Specifies the server configuration file name.

-t log Create a data log volume. The default volume type is data vol-
ume.

-s size Initial size (in MB) of the volume to be created.The default size
is 2.5 MB (which is also the minimum size)

-e size Extension size (in MB). When the volume is getting full it will
be extended ofsize MB. If size is 0, the volume will not be
extended automatically by the server. The default size is 1 MB.

-m size Maximum volume size (in MB).

volume_file_nameThe volume will be created with this name.

109

Database Utilities
The dbvolchange utility

The dbvolchange utility

Introduction

The parameters of a database volume can be modified by thedbvolchange state-
ment.

 dbvolchange [options] volume_file_name

Arguments:

-v Specifying the -v option will cause dbvolchange to output
additional information during processing.

-d flags Set debug flags. This is used to debug dbvolchange and is nor-
mally not used.

-c cfg Specifies the server configuration file name.

-e size Extension size (in MB). When the volume is getting full it will
be extended ofsize MB. If size is 0, the volume will not be
extended automatically by the server.

-m size Maximum volume size (in MB).

-f flag Define volume flags. The volume flags define the database
behaviour. The following flags are supported:

[no]dsync - When set, this causes the operating system to force
all changes related to database volumes to be written to disk.
The dsync flags is disabled by default.

[no]lsync - When set, this causes the operating system to force
all changes related to database log volumes to be written to disk
on every commit operation. The lsync flag is disbled by default.

The dsync and lsync flags improve database consistency in case
of a hardware failure or a power loss but have an impact on the
runtime performance, because additional disk i/o operations
need to be performed.

volume_file_nameThe name of the volume file.

110

Database Utilities
The dblogreset utility

The dblogreset utility

Introduction

Thedblogreset utility can be used to reset the log volumes to minimal size. The
log volume of a database environment is required to hold all committed transac-
tions between checkpoints in addition to information about transactions in
progress. A checkpoint operation will remove the information about committed
transactions, because it is guaranteed that the changes are made permanent to the
data volume at that time. Although space is freed in the log volume, the size of the
logvolume will not shrink. This can be achieved by thedblogreset utility. It will
check the log volumes for any commited transactions which may be present (eg.
due to an unclean server shutdown) and then truncate the log volume.

dblogreset [options] volume_file_name

Arguments:

-v Specifying the -v option will cause dblogreset to output addi-
tional information during processing.

-d flags Set debug flags. This is used to debug dblogreset and is nor-
mally not used.

-c cfg Specifies the server configuration file name.

When usingdblogreset, the database server may not be active.

111

Database Utilities
The DBUTIL utility

The DBUTIL utility

Introduction

Dbutil is used to maintain database security with the new Eloquence database.

Database changes are defined in a file using the DBUTIL script language. This
makes it possible for a software vendor to provide a control script to a customer to
perform database changes without manual interaction.

NOTE: The DBUTIL utility included with Eloquence A.06.00 is different than the one included
with Eloquence A.05.xx. It does currently neither support database restructuring nor does
it provide a dialog based user interface.

The following actions can be performed:

❒ Create or delete users, change user passwords
❒ Grant or revoke user properties
❒ Create or delete database specific access groups
❒ Grant or revoke group specific properties
❒ Assign users with access groups
❒ Grant or revoke data set specific access rights to an access group

DBUTIL commandline arguments

Synopsis:

 usage: dbutil [options] file

 options:

 -help = show usage (this list)
 -v = verbose (batch mode only)
 -e cnt = abort processing after encountering cnt errors
 -t tmp = where temporary files are stored
 -d flg = set debug flags

Arguments:

-v[v] Specifying the -v option will cause dbutil to output a summary
of changes after analyzing the control file and some descriptive
text during the database restructuring.

Specifying two -v options will cause dbutil to echo the control
file to stdout as it is analyzed.

-e cnt Abort processing the control file after encountering the given

112

Database Utilities
The DBUTIL utility

number of syntax or validation errors.

-t tmp This option makes it possible to specify where temporary files
will be created. If the -t argument is not specified, dbutil will
allocate temporary files at the default location of the operating
system.

-d flags This is used internally to debug dbutil itself. You should not use
this option.

file The name of a script file to use by dbutil. Specifying the file
name- will use stdin.

DBUTIL script file syntax

The dbutil script file is a plain text file. The following general rules apply:

• Everything after a hash character (#) is considered a comment and will be ignored.

• dbutil does recognize keywords in either upper or lower case (but not mixed).

• Each statement must be delimited by a semicolon (;)

• TheEXIT statement can be used to stop processing of a script file before the end of file
is reached.

• Strings must be enclosed in double quotes. To include a quote character in a string, the
quote character must be preceded by a backslash (\) character.

• A statement may span multiple lines.

The syntax description below uses the following conventions:

• All keywords are given in upper case.

• Optional syntax elements are enclosed in brackets.

113

Database Utilities
The DBUTIL utility

Specify the database server

CONNECT "[server][:service]" ;

TheCONNECT statement specifies, which database server should be connected.
When connecting the local server using the default eloqdb service, it can be omit-
ted.

For example:

 CONNECT "server";

This specifies to connect the server on host "server".

 CONNECT "server:eloqdb";

This specifies to connect to the database server on host "server" which is listening
on the port associated with service name "eloqdb".

114

Database Utilities
The DBUTIL utility

Authorizing to the database server

In order to connect to a Eloquence database server, authorization information
must be provided.

LOGON "user" [PASSWORD "password"];

user The user name.

password The password associated with the user. The password is case
sensitive.

For example:

 LOGON "dba" PASSWORD "secret";

This specifies to connect as user "dba" using the password "secret".

115

Database Utilities
The DBUTIL utility

Managing database users

TheUADMIN privilege is required to maintain database user.

Creating a database user

CREATE USER "user" [PASSWORD "password"];

Create a new database user. When a password is present, it will be associated with
the user. The password is case sensitive. Please note, that a user must be granted
the connect privilege in order to connect the server.

For example:

 CREATE USER "mike" PASSWORD "secret":

Deleting database user
DROP USER "user" [,"user2" ...];

Remove the specified user from the database server.

For example:

 DROP USER "mike","marc":

This will remove the users "mike" and "marc".

Changing user password
ALTER PASSWORD FOR USER "user" TO "password";

Change the password for the specified user. Passwords are case sensitive

For example:

 ALTER PASSWORD FOR USER "mike" TO "secret":

116

Database Utilities
The DBUTIL utility

User privileges

User capabilities which are not database specific are specified by user privileges.
The following user privileges are available:

DBA The user has server administration privileges
CONNECT The user is allowed to connect the server. This is implied if a user has

theDBA privilege.
UADMIN The user is allowed to administrate user accounts

TheUADMIN privilege is required to maintain database user.

Syntax:

 GRANT {privilege [,privilege ...]}
 TO {PUBLIC | "user" [,"user" ...]} ;

 REVOKE {privilege [,privilege ...]}
 FROM {PUBLIC | "user" [,"user" ...]} ;

Description:

TheGRANT statement is used to add the specified privileges to the capabilities of
the given users.

TheREVOKE statement is used to remove the specified privileges from the capa-
bilities of the given users.

WhenPUBLIC is specified instead of a user list, the statement applies to all users.

For example:

 REVOKE CONNECT FROM PUBLIC;
 GRANT CONNECT TO "mike","marc";

This will disallow all users besides mike and marc to connect the database server.

117

Database Utilities
The DBUTIL utility

Setting database context

DATABASE "db";

A Eloquence database server can hold more than one database. For database spe-
cific statements, the database on which they should operate must be specifid.

For example:

 DATABASE "db";

This switches the database context to database "db".

118

Database Utilities
The DBUTIL utility

Managing database groups

The Eloquence database uses groups to manage database specific privileges.
When a user is associated with a group, it will gain all capabilities granted to the
group.

A database context must be defined before managing database groups. The
DBPRIV privilege is required to maintain database groups.

Creating a database group

CREATE GROUP "group";

Create a new database access group.

For example:

 CREATE GROUP "users";

Deleting database groups
DROP GROUP "group" [,"group2" ...];

Remove the specified groups from the database.

For example:

 DROP GROUP "users";

This removes the group "users".

119

Database Utilities
The DBUTIL utility

Group privileges

The Eloquence database uses groups to manage database specific privileges.
When a user is associated with a group, it will gain all capabilities granted to the
group.

Group capabilities which are not data set specific are specified by group privi-
leges. The following group privileges are available:

DADMIN Group members have administration privileges for this database (this
is implied for users which have theDBA privilege).

DBPRIV Group members are allowed to assign database specific privileges.

A database context must be defined before managing database groups. The
DBPRIV privilege is required to maintain database groups.

Syntax:

 GRANT {privilege [,privilege ...]}
 TO {"group" [,"group" ...]} ;

 REVOKE {privilege [,privilege ...]}
 FROM {"group" [,"group" ...]} ;

Description:

TheGRANT statement is used to add the specified privileges to the capabilities of
the group.

TheREVOKE statement is used to remove the specified privileges from the capa-
bilities of the given groups.

For example:

 REVOKE DBPRIV FROM "users";
 GRANT DBPRIV,DADMIN TO "dba";

120

Database Utilities
The DBUTIL utility

Associating users with a group

The Eloquence database uses groups to manage database specific privileges.
When a user is associated with a group, it will gain all capabilities granted to the
group. A user can be a member of up to 8 groups per database.

A database context must be defined before managing database groups. The
DBPRIV privilege is required to maintain database groups.

Syntax:

 GRANT {"group" [,"group" ...]}
 TO {PUBLIC | "user" [,"user" ...]} ;

 REVOKE {"group" [,"group" ...]}
 FROM {PUBLIC | "user" [,"user" ...]} ;

Description:

TheGRANT statement is used to associate the specified users to the given groups.

TheREVOKE statement is used to disassociate the specified users from the given
groups.

WhenPUBLIC is specified instead of a user list, the statement applies to all users.

For example:

 GRANT "users" TO "mike",marc";

This will make the users mike and marc members of the group "users".

121

Database Utilities
The DBUTIL utility

Managing Table privileges

The Eloquence database uses groups to manage database specific privileges. Table
(or data set) specific privileges are granted to groups. When a user is associated
with a group, it will gain all capabilities granted to the group.

The following table specific privileges are available:

READ Group members are allowed to read the dataset
WRITE Group members are allowed to write to the dataset This implies the

READ privilege.
ERASE Group members are allowed to erase the dataset.

A database context must be defined before managing database groups. The
DBPRIV privilege is required to maintain database groups.

Syntax:

 GRANT {ALL PRIVILEGES|privilege [,privilege ...]}
 ON {ALL | "set-name" [,"set-name" ...]}
 TO "group" [,"group" ...];

 REVOKE {ALL PRIVILEGES|privilege [,privilege ...]}
 ON {ALL | "set-name" [,"set-name" ...]}
 FROM "group" [,"group" ...];

Description:

TheGRANT statement is used to add the specified privileges to the given groups.

TheREVOKE statement is used to remove the specified privileges from the given
groups.

For example:

 REVOKE ALL PRIVILEGES ON ALL FROM "users";
 GRANT WRITE ON "CUSTOMERS","PARTS" TO "users";
 GRANT READ ON ALL TO "users";
 GRANT ERASE ON "HISTORY" TO "priv";

This will provide read access on all data sets to all members of the group "users"
and write access to the data sets CUSTOMERS and PARTS. Members of the
group "priv" are allowed to erase the data set "HISTORY".

122

Database Utilities
The DBUTIL utility

Example script

connect to server

ONNECT "server:8800";
LOGON "dba" PASSWORD "dbat";

create user mike with an associated password "secret"
and allow connection to the database server
this is global to all databases

CREATE USER "mike" PASSWORD "secret";
GRANT CONNECT TO "mike";

now switch to database "db"

DATABASE "db";

create group users.
let members of group users read/write all sets

CREATE GROUP "users";
GRANT WRITE ON ALL TO "users";

create group priv.
let members of group priv erase the set "HISTORY"

CREATE GROUP "priv";
GRANT ERASE ON "HISTORY" TO "priv";

now let mike become member of groups "users" and "priv"

GRANT "users","priv" TO "mike";

123

Database Utilities
DBCREATE, DBERASE and DBPURGE commands

DBCREATE, DBERASE and DBPURGE commands

Three commands (DBCREATE, DBERASE and DBPURGE) are used to create,
erase and purge selected data set files or entire databases. Each command requires
exclusive access to the database (meaning the database cannot be open).

DBCREATE

The DBCREATE command creates and initializes the data sets of a database. The
schema processor only saves the meta information in the database server catalog,
however no resources are allocated.

DBCREATE is used after the schema program has installed the database structure
in the database server catalog. DBCREATE is available as a commandline utility
or a Eloquence statement.

The following command can be executed from the operating system command-
line:

 dbcreate [options] database [data set [data set] . . .]]]

NOTE: The user must have administrative capabilities for either the server or the database. When
using the eloqdb5 server, the user information is ignored and the maintenance password
must be specified.

The DBCREATE statement can be used in a Eloquence program:

 DBCREATE root file spec [;maintenance word] [,set list] [,return status]

NOTE: The user must be authorized with the DBLOGON statement before using executing
DBCREATE. The user must have administrative capabilities for either the server or the
database. When using the eloqdb5 server, the user information is ignored and the
maintenance password must be specified.

124

Database Utilities
DBCREATE, DBERASE and DBPURGE commands

The dbcreate commandline utility

Syntax of the dbcreate command is as follows:

 dbcreate [-uuser] [-p password] [-v] database [data set [data set] . . .]]]

The parameters are:

-u user Specify user id. The user must have administrative capabilities
for the server or the database. The user name is obtained by
default from the LOGNAME or USER environment variable.

-p password Specify password. When using the eloqdb5 server, this must be
the maintenance password of the database.

-v An optional parameter that displays the processing procedure. -
v stands for “verbose”.

database A string expression identifying the database name (for exam-
ple, SAD). If not specified, user will be prompted for database
name and password.

data set Name or number which identifies a particular data set. Specify-
ing one or more data sets is optional. If no data sets are speci-
fied, all the sets in the database definition file are created. When
data set identities are supplied, dbcreate creates only the data
sets specified. Data sets may be identified by name or number.

dbcreate Example:

dbcreate -v SAD

Display:

B1368B DBCREATE (C) COPYRIGHT MARXMEIER SOFTWARE AG

Processing data base: SAD

DATA SET INDEX(ES)
---------------- -- - --------------------
DATE 01 A
ORDER 02 A
PRODUCT 03 M 1
LOCATION 04 M
OPTION 05 D
CUSTOMER 06 D 2
 | | | |
 | | | |
 Dataset Name | | Number of Indexes defined
 | |
 | Dataset Types
 | A= Automatic Master
 | M= Manual Master
 | D= Detail
 |

125

Database Utilities
DBCREATE, DBERASE and DBPURGE commands

 Dataset Num ber

In this example, all the data sets in the SAD data definition file are created.

The DBCREATE statement

Syntax of the DBCREATE statement is as follows:

 DBCREATEdatabase [;maintenance word] [,set list] [,return status]

The parameters are:

database A string expression identifying the database name. An optional
volume label can be appended to the database name.

maintenance wordA string expression identifying a security password. This
expression can be from 1 through 16 characters in length. The
maintenance password is only used with eloqdb5 servers.

set list A string expression identifying particular data sets. Data sets
are specified by either name or number. Set identifiers are sepa-
rated by commas.

return status A numeric variable in which an error number is returned (refer
to page 197). 0 is returned if no error occurs.

When a set list is supplied, DBCREATE creates only the sets specified. Sets may
be identified by name or number (for example:"1,2,CUSTOMER"). If no set list
is supplied, DBCREATE attempts to create all data sets of the database.

When executed from the keyboard without a return status parameter, certain
errors may be reported by DBCREATE without terminating execution (see
page 197 for a description of these non-fatal errors). However, when DBCRE-
ATE is executed from a program or when it is executed from the keyboard and a
return variable is used, the first error encountered terminates execution of the
command. When the return status variable is used, the return variable contains the
error number (or 0 if no errors are encountered), but no error message is dis-
played.

DBERASE

The DBERASE command erases all entries in data set files. All associated path
information in related data sets is also erased. This command is often used prior to
reloading data entries. DBERASE is available as a commandline utility or a Elo-
quence statement.

The following command can be executed from the operating system command-
line:

126

Database Utilities
DBCREATE, DBERASE and DBPURGE commands

 dberase [-uuser] [-p password] [-v] database [data set [data set] . . .]]]

NOTE: The user must have administrative capabilities for either the server or the database or must
have the erase privilege for a dataset. When using the eloqdb5 server, the user information
is ignored and the maintenance password must be specified.

The DBERASE statement can be used in a Eloquence program:

 DBERASE root file spec [;maintenance word] [,set list] [,return status]

NOTE: The user must be authorized with the DBLOGON statement before using executing
DBERASE. The user must have administrative capabilities for either the server or the
database or must have the erase privilege for a dataset. When using the eloqdb5 server, the
user information is ignored and the maintenance password must be specified.

127

Database Utilities
DBCREATE, DBERASE and DBPURGE commands

The dberase commandline utility

Syntax of the dbcreate command is as follows:

 dberase [-uuser] [-p password] [-v] database [data set [data set] . . .]]]

The parameters are:

-u user Specify user id. The user must have administrative capabilities
for the server or the database. The user name is obtained by
default from the LOGNAME or USER environment variable.

-p password Specify password. When using the eloqdb5 server, this must be
the maintenance password of the database.

-v An optional parameter that displays the processing procedure. -
v stands for “verbose”.

database A string expression identifying the database name (for exam-
ple, SAD). If not specified, user will be prompted for database
name and password.

data set Name or number which identifies a particular data set. Specify-
ing one or more data sets is optional. If no data sets are speci-
fied, all the sets in the database definition file are created. When
data set identities are supplied, dbcreate creates only the data
sets specified. Data sets may be identified by name or number.

dberase Example:

dberase -v SAD

Disaplay:

B1368B DBCREATE (C) COPYRIGHT MARXMEIER SOFTWARE AG

Processing database: SAD

DATA SET INDEX
---------------- -- - -----------------
DATA 01 A
ORDER 02 A
PRODUCT 03 M
LOCATION 04 M
OPTION 05 D
CUSTOMER 06 D

| | |
| | |
Data Set Name | |

| |
| Data Set Type
| A = Automatic Master
| M = Manual Master

128

Database Utilities
DBCREATE, DBERASE and DBPURGE commands

| D = Detail
 |

Data Set Number

In this example, the contents of all the data sets are erased.

The DBERASE Statement

Syntax of the DBERASE statement is as follows:

 DBERASEdatabase [;maintenance word] [,set list] [,return status]

The parameters are:

database A string expression identifying the database name. An optional
volume label can be appended to the database name.

maintenance wordA string expression identifying a security password. This
expression can be from 1 through 16 characters in length. The
maintenance password is only used with eloqdb5 servers.

set list A string expression identifying particular data sets. Data sets
are specified by either name or number. Set identifiers are sepa-
rated by commas.

return status A numeric variable in which an error number is returned (refer
to page 197). 0 is returned if no error occurs.

When executed from the keyboard, DBERASE displays either the set number of
the set being erased or the related set number followed by aP when path informa-
tion is being erased.

When a set list is supplied, DBERASE erases only the data entries in the sets
specified. Sets may be identified by name or number (for example: "1,2,CUS-
TOMER"). If no set list is supplied, DBERASE attempts to erase all data sets of the
database.

When executed from the keyboard without a return-status parameter, certain
errors may be reported by DBERASE without terminating execution (see
page 197 for a description of these non-fatal errors). However, when DBERASE
is executed from a program or when it is executed from the keyboard and a return
variable is used, the first error encountered terminates execution of the command.
When the return status variable is used, the return variable contains the error num-
ber (or 0 if no errors are encountered), but no error message is displayed.

129

Database Utilities
DBCREATE, DBERASE and DBPURGE commands

NOTE: Executing a DBERASE on a master data set erases all chain information linking the master
set entries with related detail entries. This erased chain information may cause unexpected
errors on subsequent accesses of the database.

DBPURGE

The DBPURGE command deletes specified data sets or all data sets and the asso-
ciated root file. This command is often used prior to recreating the database.
DBPURGE is available as a commandline utility or a Eloquence statement.

The following command can be executed from the operating system command-
line:

 dbpurge [options] database [data set [data set] . . .]]]

NOTE: The user must have administrative capabilities for either the server or the database. When
using the eloqdb5 server, the user information is ignored and the maintenance password
must be specified.

The DBPURGE statement can be used in a Eloquence program:

 DBPURGE root file spec [;maintenance word] [,set list] [,return status]

NOTE: The user must be authorized with the DBLOGON statement before using executing
DBCREATE. The user must have administrative capabilities for either the server or the
database. When using the eloqdb5 server, the user information is ignored and the
maintenance password must be specified.

130

Database Utilities
DBCREATE, DBERASE and DBPURGE commands

The dbpurge commandline utility

Syntax of the dbpurge command is as follows:

 dbpurge [-uuser] [-p password] [-v] [-f] database [data set [data set] . . .]]]

The parameters are:

-u user Specify user id. The user must have administrative capabilities
for the server or the database. The user name is obtained by
default from the LOGNAME or USER environment variable.

-p password Specify password. When using the eloqdb5 server, this must be
the maintenance password of the database.The maintenance
password is only used with eloqdb5 servers.

-v An optional parameter that displays the processing procedure. -
v stands for “verbose”.

-f Option to force the utility to purge the database, even if dele-
tion of sets fails.

database A string expression identifying the database name (for exam-
ple, SAD). If not specified, user will be prompted for database
name and password.

data set Name or number which identifies a particular data set. Specify-
ing one or more data sets is optional. If no data sets are speci-
fied, all the sets in the database definition file are created. When
data set identities are supplied, dbcreate creates only the data
sets specified. Data sets may be identified by name or number.

dbpurge Example:

dbpurge -v SAD

Display:

B1368B DBPURGE (C) COPYRIGHT MARXMEIER SOFTWARE AG

Processing database: SAD

DATA SET
---------------- -- -
DATA 01 A
ORDER 02 A
PRODUCT 03 M
LOCATION 04 M
OPTION 05 D
CUSTOMER 06 D

* | |
| | |

131

Database Utilities
DBCREATE, DBERASE and DBPURGE commands

| | |
Data Set Name | |
and ROOT File | |

| Data Set Type
| A = Automatic Master
| M = Manual Master
| D = Detail

 |
Data Set Number

In this example, all the data sets and the root file of the SAD database are deleted.

The DBPURGE Statement

Syntax of the DBPURGE statement is as follows:

 DBPURGEdatabase [;maintenance word] [,set list] [,return status]

The parameters are:

database A string expression identifying the database name. An optional
volume label or unit specifier can be appended to the database
name.

maintenance wordA string expression identifying a security password. This
expression can be from 1 through 16 characters in length.The
maintenance password is only used with eloqdb5 servers.

set list A string expression identifying a particular data set. Data sets
are specified by either name or number. Set identifiers are sepa-
rated by commas.

return status A numeric variable in which an error number is returned (refer
to page 197 . A 0 is returned if no error occurs.

When executed from the keyboard, DBPURGE displays either the number of the
set being purged or an* when the root file is being purged.

When a set list is supplied, DBPURGE deletes the data set files of the specified
sets. Sets may be identified by either name or number (for example,"1,2,CUS-
TOMER"). If no set list is supplied, DBPURGE attempts to purge all data set files
of the database, and if successful, attempts to purge the root file.

When executed from the keyboard without a return-status parameter, certain
errors may be reported by DBPURGE without terminating execution (see
page 197 for a description of these non-fatal errors). However, when DBPURGE
is executed from a program or when it is executed from the keyboard and a return
variable is used, the first error encountered terminates execution of the command.
When the return status variable is used, the return variable contains the error num-
ber (or 0 if no errors are encountered), but no error message is displayed.

132

Database Utilities
The dbexport and dbimport Programs

The dbexport and dbimport Programs

The two program files, dbexport and dbimport, are used to copy the entries in data
sets of a database to and from ASCII files. The database structural information is
not saved. These two program files are useful when restructuring a database.

dbexport

The HP-UX program file dbexport copies data entries from all or selected data
sets to ASCII files (see Appendix for format description). There are two export
modes - multiple files and single file.

If exporting into multiple files the contents of each data set is written into a sepa-
rate file. These export files are nameddatabase_name.dataset_number.exp. This
is the default export mode. We recommend using a directory to hold all export
files of a database.

If exporting into a single file, you can choose any filename or stdout.

The dbexport command must be executed from the operatind system prompt. Syn-
tax of the command is as follows:

dbexport [options] database [data set [data set] . . .]]]

Options:

-u user Specify user id. The user name is obtained by default from the
LOGNAME or USER environment variable.

-p password Specify password. When using the eloqdb5 server, this must be
the maintenance password of the database.

-v Detailed listing of procedures. -v stands for “verbose”.

-o path Enter directory where export (.exp) files should be created. If -o
path is not used, the export files are created in the current direc-
tory. This option cannot be used with thesingle file option.

-c chained export

-a export automatic sets

-r create restructure information

-f sep Specifies a different field separator. The default field separator
is comma (’,’). With this option dbexport utility program may

133

Database Utilities
The dbexport and dbimport Programs

be used to export data from a Eloquence database to an external
application.

-s file output into single file, ‘-’ = stdout

databasename Enter name of database to be exported.

dataset Enter name or number of the data set to be exported. If no data
set names are specified, all data sets associated with the named
database are exported.

Execute the dbexport command as shown:

dbexport -p secret -v -o sadexp SAD

This command exports the data from all SAD data sets to export files
(SAD.03.exp, SAD.04.exp, SAD.05.exp, and SAD.06.exp). SAD data sets 01 and
02 are defined in the root file as automatic data sets and are therefore not exported.
The-o sadexp option specifies that the export files are to be created in the
sadexp directory. The-p secret option specifies the user password.

NOTE: Data sets of type automatic master are filled automatically by dbimport. These data sets are
not exported by dbexport, unless option -a is used with dbexport. However, automatic sets
are not imported from exported files, but are built up during the loading of corresponding
detail data.

Display:

B1368B DBEXPORT (C) COPYRIGHT MARXMEIER SOFTWARE AG 2002 (A.06.00)

Processing database : SAD
Export path : sadexp

DATA SET Records Count
---------------- -- - -------- --------
DATE 01 A 11
ORDER 02 A 11
PRODUCT 03 M 5 5
LOCATION 04 M 1 1
OPTION 05 D 16 16
CUSTOMER 06 D 11 11

| | | | |
Data Set Name | | | Number of exported entries counted

| | |
| | Number of entries in the data set
| |
| Data Set Type
| A = Automatic Master
| M = Manual Master
| D = Detail
|
Data Set Number

134

Database Utilities
The dbexport and dbimport Programs

NOTE: If a data set contains no entries, no export file will be created for that data set.

dbimport

The HP-UX program file dbimport copies data from export files into the entire
database or to selected data sets. Dbimport can be used to restructure an existing
Eloquence database, as outlined in page 135 . In such instances, dbimport copies
data from export files, created by dbexport, into a database. Dbimport can also be
used to import data from export files created by an application program.

NOTE: Files to be imported must have the naming formatdatabasename.datasetnumber.exp.
Therefore, if you use an application program to dump data to a file that you plan to use
dbimport on later, make sure that data is dumped to a file named
databasename.datasetnumber.exp.

The dbimport command must be executed from the operating system prompt.
Syntax of the command is as follows:

dbimport [options] database [data set [data set] . . .]]]

Options:

-u user Specify user id. The user name is obtained by default from the
LOGNAME or USER environment variable.

-p password Specify password. When using the eloqdb5 server, this must be
the maintenance password of the database.

-v Detailed listing of procedures. -v stands for “verbose”.

-i path Enter directory where export (.exp) files are situated. If -ipath
is not used, program looks in current directory.

-p pswd Enter database password with write access.

-d trace item value assignment

-r file restructure database. ‘-’ = no file

-s file import from single file, ‘-’ = stdin

-f sep Specifies a different field separator. The default field separator
is comma (’,’). With this option dbimport utility program may
be used to import data into a Eloquence database from an exter-
nal application.

databasename Enter name of database to receive the data.

dataset Enter name or number of the data set to be imported into the

135

Database Utilities
The dbexport and dbimport Programs

database.

Execute the dbimport command as shown:

dbimport -v -i sadexp -p secret SAD

This command imports the data from the SAD export files (SAD.03.exp,
SAD.04.exp, SAD.05.exp, and SAD.06.exp) into the .idx and .dat files created
using dbcreate. SAD data sets 01 and 02 are defined in the root file as automatic
data sets and are therefore filled automatically when dbimport is executed.

The-i sadexp option specifies that the export files are in the sadexp directory.
The-p secret option specifies the user password.

Display:

B1368B DBIMPORT (C) COPYRIGHT MARXMEIER SOFTWARE AG 2002 (A.06.00)

Processing database: SAD
Import path : sadexp

DATA SET Count
---------------- -- - --------
DATE 01 A
ORDER 02 A
PRODUCT 03 M 5
LOCATION 04 M 1
OPTION 05 D 16
CUSTOMER 06 D 11

| | | |
Data Set Name | | Number of imported entries counted

| |
| Data Set Type
| A = Automatic Master
| M = Manual Master
| D = Detail
|
Data Set Number

NOTE: If you attempt to import a file that does not follow the naming conventions
databasename.datasetnumber.exp, the following message appears:
export file name: No such file or directory .

NOTE: If a detail data set contained no entries, no export file will be created for that data set and
the following message appears:export file name: No such file or directory .

Database Restructuring with dbimport

If you specify the -rfile option in the commandline, dbimport will operate in
restructure mode. In this mode, dbimport will load data sets/items on a symbolic
base. Data sets and items are identified by name rather than number or position in
record. Unless you have changed set or item names, or you want to initialize new
data sets or items, you don’t need to worry about the database reload process.

136

Database Utilities
The dbexport and dbimport Programs

dbimport restructure file syntax
IMPORT SET data set [= data set]
{

item spec = item spec ;
item spec = :NULL;
item spec = :CONST constant ;
...

}

data set data set name or number

item spec item name or number. If data item is defined with a subitem
count (array) you may handle item elements individually. For
example:

ITEM this will specify all elements
ITEM [1] this will specify first element
ITEM [1-3] this will specify elements 1 to 3

:NULL initialize item with default value. This is zero for any numeric
item type or spaces for strings. This is the default for new
items.

:CONST initialize item with constant value. Only integer or string con-
stants may be specified here. So you have to specify a LONG or
SHORT constant as a string constant (eg. “3.1415”).

All characters past ’#’ (unless in a quoted string) will be ignored until end-of-line.

NOTE: For the database to be loaded, data set/item names are taken from the ROOT file. For the
export file(s) the data set/item names are saved by the dbexport utility if run with the -r
option. If no data set/item names are saved in the export file(s) (dbexport not run with -r
option) you have to specify each item that has a different position in the export set.

137

Database Utilities
The dbexport and dbimport Programs

Formal syntax specification
 T_NUMBER = positive integer constant

 import_spec:
 /* empty */
 | set_spec import_spec

 set_spec:
 IMPORT SET to_set from_set
 set_spec_item_part

 set_spec_item_part:
 /* empty */
 | “{” item_spec_list “}”

 to_set: /* target set */
 set name | set number

 from_set: /* set in import file */
 /* empty */ | “=” set name | “=” set number

 item_spec_list:
 /* empty */
 | item_spec item_spec_list

 item_spec: /* item conversion spec */
 to_spec “=” from_spec “;”

 to_spec: /* target item (range) */
 to_item range_spec

 to_item:
 item name | item number

 from_spec:
 T_NUMBER /* field number in exported record */
 | item_name /* or exported field name (range) */
 | “:NULL” /* NULL (default) value */
 | “:CONST” T_NUMBER /* integer constant */
 | “:CONST” string_in_quotes /* string constant */

 range_spec: /* array element range */
 /* empty */
 | “[” T_NUMBER “]”
 | “[” T_NUMBER “-” T_NUMBER “]”

Example 1:
Import set CUSTOMER from ACCOUNTS
IMPORT SET CUSTOMER = ACCOUNTS

Fill PRODUCT from ORDER
IMPORT SET PRODUCT = ORDER
{
 PRODUCT-NO = ORDER-NO;
 PROD-DESC = :CONST “* Unknown *”;
 # all other default
}

138

Database Utilities
The dbexport and dbimport Programs

Example 2:
New database layout ... Old database layout ...

 ITEMS: ITEMS:

 ORDER-NO, X8; ORDER-NO, X8;
 PRODUCT-NO, X6; PRODUCT-NO, X6;
 QUANTITY, I; QUANTITY, I;
 SHIPMENT-DATE, X4; SHIPMENT-DATE, X4;
 QTY-AVAIL, I; ARRAY, 3I;
 ARRAY, 4I;

 SETS: SETS:

 N: ORDER-DETAIL D(/0); N: PRODUCTION D (/0);
 E: ORDER-NO, E: ORDER-NO,
 PRODUCT-NO, PRODUCT-NO,
 QUANTITY, QUANTITY,
 SHIPMENT-DATE, SHIPMENT-DATE,
 QTY-AVAIL, ARRAY;
 ARRAY;

Figure 8 Example of new layout

Database reload process…

You want to load your new data set ORDER-DETAIL from your old data set
PRODUCTION. All data items should be taken from the the old data set with the
following exceptions:

• The new QTY-AVAIL should be filled from the old QUANTITY item.
• The new QUANTITY item should be filled with zero.
• The new SHIPMENT-DATE should be set to a constant value.
• The new ARRAY item should be shifted.

Your import specification file should contain…

 IMPORT SET ORDER-DETAIL = PRODUCTION
 {

139

Database Utilities
The dbexport and dbimport Programs

 QTY-AVAIL = QUANTITY;
 QUANTITY = :NULL;
 SHIPMENT-DATE = :CONST “0000”;
 ARRAY[1-2] = ARRAY[1-2];
 ARRAY[4] = ARRAY[3];
 ARRAY[3] = :CONST 1;
 }

140

Database Utilities
The dbexport and dbimport Programs

141

6

Example Operations

This chapter contains examples of defining, using, and maintaining an Eloquence
database. One section describes the design and definition of an example database
used to store sales analysis data. The next section contains programs utilizing the
database manipulation statements to enter and retrieve data from the database. A
third section shows how the database utilities are used for database backup and
restructuring.

142

Example Operations
Database Design

Database Design

The next figure shows a customer order form for a fictitious company. The com-
pany owner has decided to design an Eloquence database to be used to store infor-
mation from the order form. Once the data has been stored in the database, the
owner wishes to generate various sales reports using the order data.

Demonstration Bicycle Company

ORDER FORM

Order Date ______ (MMYY) Order Number ______

Ship Date ______ (MMYY) Region ______

 Salesperson ______

Name ___________________________________

 Address ___________________________________

City ______________ State____________

Zip Code ______________Country____________

Product ______________ Price ____________

Options

Option Type Price

__________ __________ _________

__________ __________ _________

__________ __________ _________

__________ __________ _________

__________ __________ _________

__________ __________ _________

Total: _________

The database structure shown next could be used to store the required data. This
structure offers little advantage over using a direct (random) access data file, but
does provide a starting point for the database design. Notice that in order to gener-
ate a list of all orders for a particular product, all entries in the detail set must be
scanned. Also no provision is made in this structure to handle an order which
includes more than four options.

143

Example Operations
Database Design

In order to provide a common basis for diagramming database designs, pentagons
are used to represent manual master data sets, triangles are used to represent auto-
matic master data sets, and trapezoids are used to represent detail data sets. The
item names and item types used to define the data entry within the data set are also
shown.

Figure 9 Possible Database Structure

The next database structure shows a quick method of generating lists of orders for
a particular product number. Using this structure, an application program can per-
form a DBFIND (see page 59) on the order detail data set to locate the chain head
for a particular product number (PRODUCT-NO). The program can then perform
successive chained DBGETs (see page 59) to retrieve the required orders. Only
the desired orders are accessed, thus reducing the time required to generate the list
when a large number of orders are stored in the database.

 ORDER (Detail)

ORDER-NO X10
REGION X6
SALESPERSON X4
ORDER-DATE I
SHIP-DATE I
NAME X30
ADDRESS 2X30
CITY X16
STATE X6
ZIP-CODE X8
COUNTRY X12
PRODUCT-NO X6
PRICE L
OPTION-NO 4X10
OPTION-PRICE 4L
OPTION-TYPE 4I
TOTAL-PRICE L

144

Example Operations
Database Design

Figure 10 Possible Database Structure

Although an automatic master set could have been used for the PRODUCT master
set, a manual master set was chosen for two reasons. First, since the PRODUCT
set is a manual master, Eloquence DBMS automatically checks the validity of the
product number (PRODUCT-NO) as an order is entered into the database. Sec-
ond, additional data can be stored in the PRODUCT data set, such as a product
description (PRODUCT-DESC). Automatic master entries cannot contain items
other than the search item.

The database structure shown next utilizes a detail data set to store the option
information and a master data set to store the rest of the order data. This organiza-
tion of data corresponds to dividing an order into two forms, as shown in the next
figure. Unlike the previous structures shown, the number of options that can be
stored with any order is limited only by the number of free entries in the OPTION
data set. In addition, this organization requires fewer disk space to store order
information when fewer than four options are ordered. (In the previous examples,
the space to store four options with each order is allocated whether the options are
purchased or not.) Notice that all order numbers within the ORDER data set must
be unique, since the order number is a search item.

ORDER-NO X10
REGION X6
SALESPERSON X4
ORDER-DATE I
SHIP-DATE I
NAME X30
ADDRESS 2X20
CITY X16
STATE X6
ZIP-CODE X8
COUNTRY X12
PRODUCT-NO X6
PRICE L
OPTION-NO 4X10
OPTION-PRICE 4L
OPTION-TYPE 4I
TOTAL-PRICE L

Order (Detail)

PRODUCT (Manual Master)

PRODUCT-NO X6

PROD-DESC X30

145

Example Operations
Database Design

Figure 11 Possible Database Structure

ORDER-NO
REGION
SALESPERSON
ORDER-DATE
SHIP-DATE
NAME
ADDRESS
CITY
STATE
ZIP-CODE
COUNTRY
PRODUCT-NO
PRICE
OPTION-NO
OPTION-PRICE
OPTION-TYPE
TOTAL-PRICE

X10
X6
X4
I
I
X30
2X30
X16
X6
X8
X12
X6
L
4X10
4L
4I
L

CUSTOMER (Manual Master)

OPTION (Detail)

ORDER-NO X10
OPTION-NO X10
OPTION-PRICE L
OPTION-TYPE I

146

Example Operations
Database Design

Figure 12 Order Form with Separate Option Forms

The advantages of the previous two structures are incorporated into the structure
shown below. The CUSTOMER data set contains all order information except for
option data, which is stored in the OPTION data set. Options are logically linked
to the order through the ORDER master data set. Orders for a particular product
are chained together using the PRODUCT master set.

 Demonstration Bicycle Company

Order Date __________(MMYY) Order Number ___________

 Ship Date __________(MMY Region ___________

 Salesperson ___________

Name ___

Address ___

City ____________________ State ________________

Zip Code ____________________ Country ________________

Product ____________________ Price ________________

 Total ________________

 ORDER-FORM

 DEMONSTRATION BICYCLE COMPANY

 Option Order Form

Order-Number _____________________

Option ___________________________

Type _____________________________

Price ____________________________

 DEMONSTRATION BICYCLE COMPANY

 Option Order Form

Order-Number _____________________

Option ___________________________

Type _____________________________

Price ____________________________

 DEMONSTRATION BICYCLE COMPANY

 Option Order Form

Order-Number _____________________

Option ___________________________

Type _____________________________

Price ____________________________

147

Example Operations
Database Design

Figure 13 Possible Database Structure

Although Eloquence DBMS prevents orders from being entered for products not
in the PRODUCT master, it does not prevent duplicate order numbers (ORDER-
NO) from being entered. An order entry program can easily prevent the entry of
duplicate order numbers, however, by performing a calculated DBGET on the
ORDER master set before entering the order into the CUSTOMER and OPTION
data sets.

The final database design, which is used throughout the rest of this chapter, is
shown below. A second manual master set, LOCATION, is used to chain orders
from a particular sales region. A second automatic master, DATE, is used to locate
orders for a particular order date or ship date. Dates are stored as an integer num-
ber (to reduce disk space requirements), and are easily converted to and from an
ASCII character date within an application program.

ORDER-NO X10
NAME X30
ADDRESS 2X30
CITY X16
STATE X6
COUNTRY X12
ZIP-CODE X8
ORDER-DATE I
SHIP-DATE I
REGION X6
PRODUCT-NO X6
PRICE L
SALESPERSON X4

PRODUCT-NO X6

PROD-DESC X30

 ORDER-NO X10

 ORDER-NO X10
 OPTION-NO X10
 OPTION-PRICE L
 OPTION-TYPE I

PRODUCT
(Manual Master)

ORDER
(Automatic Master)

CUSTOMER (Detail) OPTION (Detail)

148

Example Operations
Database Design

Figure 14 Sales Analysis Database

PRODUCT-NO X6

PROD-DESC X30

DATE I ORDER-NO X10

ORDER-NO X10
NAME X30
ADDRESS 2X30
CITY X16
STATE X6
COUNTRY X12
ZIP-CODE X8
ORDER-DATE I
SHIP-DATE I
REGION X6
PRODUCT-NO X6
PRICE L
SALESPERSON X4

 ORDER-NO X10
 OPTION-NO X10
 OPTION-PRICE L
 OPTION-TYPE I

REGION X6

REGION-DESC X30

REGION-TYPE I

PRODUCT LOCATION DATE ORDER

CUSTOMER OPTION

149

Example Operations
Database Definition and Creation

Database Definition and Creation

Once the database has been designed, the database definition language (DBDL) is
used to define (describe) the database. An editing program, such as vi, is used to
create a data file with the definitions. The following listing defines the Sales Anal-
ysis Database (SAD) described in the previous section, page 142 :

BEGIN DATABASE SAD;

PASSWORDS:
 3 SECRETARY;
 10 SALESMAN;
 15 MANAGER;

ITEMS:
 ADDRESS, 2 X30;
 CITY, X16;
 COUNTRY, X12;
 DATE, I;
 NAME, X30;
 OPTION-DESC, X10;
 OPTION-PRICE, L;
 OPTION-TYPE, I;
 ORDER-DATE, I;
 ORDER-NO, X10;
 PRICE, L;
 PRODUCT-NO, I;
 PROD-DESC, X30;
 REGION, X6;
 REGION-DESC, X30;
 REGION-TYPE, I;
 SALESPERSON, X4;
 SHIP-DATE, I;
 STATE, X6;
 ZIP-CODE, X8;
 DUMMY, S;

SETS:

N: DATE, AUTOMATIC (3/10,15);
E: DATE (2);

N: ORDER, A (3/10,15);
E: ORDER-NO (2);

N: PRODUCT, MANUAL (3,10/15);
E: PRODUCT-NO (1),
 PROD-DESC;

N: LOCATION, M (3,10/15);
E: REGION (1),
 REGION-DESC,
 REGION-TYPE;

N: OPTION, DETAIL (3/10,15);

150

Example Operations
Database Definition and Creation

E: ORDER-NO (ORDER),
 OPTION-DESC,
 OPTION-PRICE,
 OPTION-TYPE;

N: CUSTOMER, D (3/10,15);
E: ORDER-NO (ORDER),
 NAME,
 ADDRESS,
 CITY,
 STATE,
 COUNTRY,
 ZIP-CODE,
 ORDER-DATE (DATE),
 SHIP-DATE (DATE),
 REGION (LOCATION),
 PRODUCT-NO (PRODUCT),
 PRICE,
 SALESPERSON,
 DUMMY;

END.

The next step is to create the database root file. This is done by using the schema
program, described in page 41 . For example, if the database definition is saved in
the data file SAD.txt, start the schema program from the HP-UX prompt as fol-
lows:

schema SAD.txt

Once the schema program has created the root file, the data set files are created
using the dbcreate command or the DBCREATE statement (discussed in page 105
). An example of the dbcreate command follows:

dbcreate SAD

151

Example Operations
Eloquence DBMS Programming Examples

Eloquence DBMS Programming Examples

Once a database has been defined using the schema program and created using
dbcreate, data can be written to and read from the database using the manipulation
commands (page 59). This section gives examples of each of the database manip-
ulation statements. All programs work with the Sales Analysis Database (SAD)
discussed in the previous section.

Example Program 1

One of the simplest reports that can be produced is a list of a data set’s contents. A
sample listing of the contents of the CUSTOMER data set is shown next, as pro-
duced by example program 1.

For the programmer who has not used Eloquence DBMS, there are several small,
but important, details which should be noted. In line 1080, B$ is defined as the
database name. Two blanks must precede the name. The DBOPEN statement (line

Table 8 OUTSTANDING ORDERS LIST

ORDER NUMBER CUSTOMER NAME PRICE

100 SMITH THOMAS A. 175.50

101 NONAME, JOSEPH 77.50

102 JOHNSON, SAM 162.50

103 HERNANDES, JOSE 109.75

104 HOUSEMAN, SEAN 133.00

105 SONO, JOMO A. 135.00

106 HEINZ HEINING 175.00

107 DALLING, JIMMY 150.00

108 ARAUJA, LUCIANO 80.00

109 BEKKER,BART 125.00

110 GISSING,MALCOMB 45.00

======

TOTAL ORDERS 1368.25

152

Example Operations
Eloquence DBMS Programming Examples

1100) fills these blanks with a database id number (two ASCII digits from 00
through 09). This id number is used in subsequent DBML statements to identify
the database, rather than the database name.

Note that the DBOPEN statement opens the database for exclusive access. This
means that if another user attempts to open the database an error occurs when
DBOPEN is executed. This error takes the form of a non-zero value in the first
element of the status array S(*). S(*) must be of type integer and must contain at
least ten elements, in this case S(0) through S(9).

1000 ! EXAMPLE PROGRAM 1
1010 !
1020 ! OUTSTANDING ORDERS REPORT (NOT INCLUDING ALL DETAIL)
1030 !
1040 INTEGER S(9)
1050 DIM B$[12],P$[10],Buf$[170]
1060 DIM Desc$[30],order_no$[10],Name$[30]
1070 DISP “Cr/H Cl/S”; ! CLEAR SCREEN
1080 B$=” SAD,SALES”
1090 P$=”MANAGER”
1100 DBOPEN (B$,P$,3,S(*)) ! OPEN FOR EXCLUSIVE ACCESS
1110 IF S(0) THEN Dberr
1120 !
1130 ! INITIALIZE VARIABLES & PRINT REPORT HEADER
1140 !
1150 Rep: Total=0
1160 Eof=11
1170 PRINT TAB(20);”OUTSTANDING ORDERS LIST”;LIN(1)
1180 PRINT “ORDER NUMBER CUSTOMER NAME”;SPA(14);”PRICE”;
 LIN(1);RPT$(”-”,48);LIN(1)
1190 !
1200 ! PRODUCE THE REPORT
1210 !
1220 START report:DBGET (B$,”CUSTOMER”,2,S(*),”@”,Buf$,0)
1230 IF S(0)=Eof THEN End_report
1240 IF S(0) THEN Dberr
1250 UNPACK USING Pf2;Buf$
1260 Pf2:PACKFMT Order_no$,Name$,60X,16X,6X,12X,8X,2X,2X,6X,2X,
 Price
1270 PRINT USING Itm_image;Order_no$,Name$,Price
1280 Itm_image: IMAGE 16A,22A,2X,5D.DD
1290 !
1300 ! ACCUMULATE TOTAL
1310 !
1320 Total=Total+Price
1330 GOTO Start_report
1340 !
1350 ! PRINT FINAL TOTALS
1360 !
1370 End_report:PRINT USING Tot_image;Total
1380 END
1390 Tot_image:IMAGE 39X,9(”=”) / 3X,”TOTAL ORDERS”,24X,6D.DD /
1400 !
1410 ! DATABASE ERROR HANDLER
1420 !
1430 Dberr:DISP LIN(1);”UNEXPECTED DATABASE ERROR “;
 VAL$(S(0));” IN LINE”;S(6)
1440 END

153

Example Operations
Eloquence DBMS Programming Examples

In line 1070 of the program on the previous page, the charactersCr/H andCl/S
should be replaced by the cursor home and clear display special control characters
respectively.

The status array should be checked for an abnormal condition (non-zero first ele-
ment) after each DBML operation. If an abnormal condition is detected in this
program, control is transferred to the line labeled Dberr, which displays the error
code in the status array and the line number where the error occurred.

The process of reading all orders is accomplished by a loop containing a serial-
access DBGET (see line 1220). This line reads the next non-empty record from
the CUSTOMER set and puts the record into the string Buf$.

The pertinent items from this buffer are extracted via the UNPACK USING state-
ment and then printed. Note the use of Xs to skip unused fields in the PACKFMT.
For clarity, each X field corresponds to a field in the database. The whole group
could be replaced, however, by 114X. Before reading the next record, the price of
the current order is added into the total price of all orders read so far.

When the orders in the CUSTOMER set are exhausted, the first element of the sta-
tus array, S(0), indicates when an end-of-file has been reached. Line 1230 detects
this and branches to print the total of all order prices.

Example Program 2

Example program 2 prints a list of all orders grouped by product. This is accom-
plished by serially reading each entry in the PRODUCT set (see line 1220). Then,
for each product, a listing of the record contents with the same product number in
the CUSTOMER detail data set is produced.

It is not necessary to scan the entire CUSTOMER section to find entries with the
correct product number. The chain between the CUSTOMER set and the PROD-
UCT set with PRODUCT-NO as the search field allows direct access to those
entries in the CUSTOMER set with a particular product number. To access the
entries on the chain, a DBFIND is first executed (line 1340). Status array element
S(5) returns the number of entries in the chain. A FOR-NEXT loop going from 1
to S(5) with a chained mode DBGET (line 1370) extracts the information for each
order with the desired product number.

The procedure reads the chain in a “forward” direction. It is possible to read the
chain backwards by using a direct mode DBGET and chain pointers which are
returned in the status array by both DBFIND and DBGET. It is also possible to
use DBGET mode 6 (chained backward). To change example program 2 to do a
backward chain read, replace line 1370 with the following:

154

Example Operations
Eloquence DBMS Programming Examples

1370 DBGET (B$,”CUSTOMER”,4,S(*),”@”,Buf$,S(7))

or

1370 DBGET (B$,”CUSTOMER”,6,S(*),”@”,Buf$,(0))

Example program 2 also solves one of the problems of program 1. By opening the
database in mode 8 (read-only mode) instead of mode 3 (exclusive access), other
users can also open the database in mode 8 and do concurrent reads. Opening in
mode 8, however, fails if another user has the database opened in either mode 3 or
mode 1. As long as the database is opened by one user in mode 8, no one can open
it in a mode which permits modifications of the database.

 OUTSTANDING ORDERS LIST

PRODUCT ORDER NUMBER CUSTOMER NAME PRICE

--
50 (Tricycle)
 110 Gissing, Malcomb 45.00
 =========
 TOTAL ORDERS FOR 50 45.00

1000 (10-Speed Bicycle)
 102 Johnson, Sam 162.50
 106 Heining, Heinz 175.00
 107 Dalling, Jimmy 150.00
 =========
 TOTAL ORDERS FOR 1000 487.50

100 (Standard Bicycle)
 101 Noname, Joseph 77.50
 103 Hernandes, Jose 109.75
 108 Arauja, Luciano A. 80.00
 =========
 TOTAL ORDERS FOR 100 267.25

300 (3-Speed Bicycle)
 104 Houseman, Sam 133.00
 =========
 TOTAL ORDERS FOR 300 133.00

500 (5-Speed Bicycle)
 100 Smith, Thomas A. 175.50
 105 Sono, Jomo A. 135.00
 109 Bekker, Bart 125.00
 =========
 TOTAL ORDERS FOR 500 435.50

 TOTAL ORDERS $1368.25
 ===========

1000 ! EXAMPLE PROGRAM 2
1010 !
1020 ! OUTSTANDING ORDERS REPORT (NOT INCLUDING ALL DETAIL)
1030 !
1040 INTEGER S(9), Prod_no

155

Example Operations
Eloquence DBMS Programming Examples

1050 DIM B$[12],P$[10],Buf$[170]
1060 DIM Desc$[30],Order_no$[10],Name$[30]
1070 DISP “Cr/H Cl/S”; ! CLEAR SCREEN
1080 B$=” SAD,SALES”
1090 P$=”MANAGER”
1100 DBOPEN (B$,P$,8,S(*)) ! OPEN FOR READ-ONLY ACCESS
1110 IF S(0) THEN Dberr
1120 !
1130 ! INITIALIZE VARIABLES & PRINT REPORT HEADER
1140 !
1150 Rep:Total=Master_total=0
1160 Eof=11
1170 PRINT TAB(20);”OUTSTANDING ORDERS LIST”;LIN(1)
1180 PRINT “PRODUCT ORDER NUMBER ‘CUSTOMER NAME”;
 SPA(14);”PRICE”;LIN(1);RPT$(”-”,63);LIN(1)
1190 !
1200 ! PRODUCE THE REPORT
1210 !
1220 Start_report:DBGET (B$,”PRODUCT”,2,S(*),”@”,Buf$,0)
1230 IF S(0)=Eof THEN End_report
1240 IF S(0) THEN Dberr
1250 UNPACK USING Pf;Buf$
1260 Pf: PACKFMT Prod_no,Desc$
1270 !
1280 ! PRINT HEADER FOR PRODUCT
1290 !
1300 PRINT VAL$(Prod_no);” (”;TRIM$(Desc$);”)”
1310 !
1320 ! PRINT ORDERS
1330 !
1340 DBFIND (B$,”CUSTOMER”,1,S(*),”PROD_NO”,Prod_no)
1350 IF S(0) THEN Dberr
1360 FOR I=1 TO S(5)
1370 DBGET (B$,”CUSTOMER”,5,S(*),”@”Buf$,0)
1380 IF S(0) THEN Dberr
1390 UNPACK USING Pf2;Buf$
1400 Pf2: PACKFMT Order no$,Name$,60X,16X,6X,12X,8X,2X,2X,6X,
 2X,Price
1410 PRINT TAB(16);
1420 PRINT USING Itm_image;Order_no$,Name$,Price
1430 Itm_image:IMAGE 16A,22A,2X,5D.DD
1440 !
1450 ! ACCUMULATE TOTALS
1460 !

1470 Total=Total+Price
1480 Master_total=Master_total+Price
1490 NEXT I
1500 !
1510 ! PRINT TRAILER FOR PRODUCT
1520 !
1530 PRINT TAB(54);
1540 PRINT USING Tot_image;VAL$(Prod_no),Total
1550 Total=0
1560 GOTO Start_report
1570 !
1580 ! PRINT FINAL TOTALS
1590 !
1600 End_report:PRINT USING Mstr_image; Master_total
1610 END
1620 Tot_image:IMAGE 9(”=”) / 3X,”TOTAL ORDERS FOR “,10A,24X, 6D.DD

156

Example Operations
Eloquence DBMS Programming Examples

/
1630 Mstr_image:IMAGE // 25X,”TOTAL ORDERS”,14X,”$”8D.DD /
54X,9(”=”)
1640 !
1650 ! DATABASE ERROR HANDLER
1660 !
1670 Dberr:DISP LIN(1);”UNEXPECTED DATABASE ERROR “;
 ‘VAL$(S(0));” IN LINE”;S(6)
1680 END

In line 1070 of the above program, the charactersCr/H andCl/S should be
replaced by the cursor home and clear display special control characters respec-
tively.

Example Program 3

Example program 3 allows other users to perform write operations (DBPUT,
DBDELETE, and DBUPDATE) by opening the database in mode 1. Other users
can now open the database in mode 1 for reading. By using the locking capability,
other programs can perform puts, deletes, and updates.

This program is basically an expansion of the previous example. The options for
each order are listed by inserting a chained-access DBGET through the OPTION
set for each order found in CUSTOMER. The DBFIND on the OPTION set (line
1470) using the order number from CUSTOMER finds the head of the chain of
options. The FOR-NEXT loop (line 1490) then chains through the entries in the
OPTION set, doing chained-mode DBGETS.

A significant feature of this program is the replacement of the UNPACK USING
statements with IN DATA SETs. Lines 1180 through 1200 set up a correspon-
dence between variables in the Eloquence program and fields in the data sets.
Thus, when the DBGET on PRODUCT is performed (line 1310), the values of the
fields PRODUCT-NO and PRODUCT-DESC in the PRODUCT set are automati-
cally assigned to the variables Prod_no and Desc$. Similarly, when the DBGET in
line 1500 is executed, new values are assigned to Option_desc$ and P0.

The use of SKP in the IN DATA SET for the OPTION set (line 1200) instructs the
system to ignore the value of the ORDER-NO field. It is not assigned to any vari-
able since this field was read by DBGET on the CUSTOMER set and assigned to
Order_no$; reassigning it would be superfluous.

The USE ALL option on the IN DATA SET for the CUSTOMER set (line 1190)
specifies that only fields whose names correspond to variables already in the pro-
gram are to be unpacked into their corresponding variables.

157

Example Operations
Eloquence DBMS Programming Examples

Only the variables Order_no$ and Name$ in this program correspond to fields in
the CUSTOMER set. Thus, when the DBGET in line 1410 is executed, only the
value of the fields ORDER-NO and NAME are assigned to variables (Order_no$
and Name$, respectively).

Another feature of example program 3 is error control and program termination.
Lines 1080 and 1090 allow the program to trap the HALT key and any error con-
ditions and wrap-up gracefully. Both termination conditions, as well as the data-
base routine, then attempt to close the database (line 1900). In this instance,
however, the DBCLOSE is not critical. Had any write operations been performed,
the close would be necessary to properly record the changes made to the database.

A mode 4 DBCLOSE is automatically executed when the program ENDs when
the database is not closed prior to program completion. This close updates the data
stored on the disk, but leaves the database open for further access. Certain opera-
tions, such as DBERASE, require exclusive access to the database, and cannot be
performed until a mode 1 DBCLOSE is executed.

 OUTSTANDING ORDERS LIST

PRODUCT ORDER NUMBER CUSTOMER NAME OPTIONS PRICE
--

50 (Tricycle)
 110 Gissing, Malcomb 45.00

 45.00
 ========
 TOTAL ORDERS FOR 50 45.00

1000 (10-Speed Bicycle)
 102 Johnson, Sam 150.00
 Chrome 12.50

 162.50

 106 Heining, Heinz 150.00
 Light 10.00
 Basket 15.00

 175.00

 107 Dalling, Jimmy 150.00

 150.00
 ========
 TOTAL ORDERS FOR 1000 487.50

100 (Standard Bicycle)
 101 Noname, Joseph 75.00
 Horn 2.50

 77.50

158

Example Operations
Eloquence DBMS Programming Examples

 103 Hernaned, Jose 75.00
 Light 5.00
 Mud Flaps 2.50
 Horn 10.00
 Stripes 2.50
 Fan 10.00

 109.75

 108 Arauja, Luciano A. 75.00
 Horn 5.00

 80.00
 ========
 TOTAL ORDERS FOR 100 267.25

300 (3-Speed Bicycle)
 104 Houseman, Sean 110.00
 Light 5.00
 Super Tire 18.00

 133.00
 ========
 TOTAL ORDERS FOR 300 133.00

500 (5-Speed Bicycle)
 100 Smith, Thomas A. 125.00
 Light 5.00
 Basket 45.00

 175.50

 105 Sono, Jomo A. 125.00
 Horn 2.50
 Reflector 7.50

 135.00

 109 Bekker, Bart 125.00

 125.00
 ========
 TOTAL ORDERS FRO 500 435.50

 TOTAL ORDERS $1368.25
 ==========

1000 ! EXAMPLE PROGRAM 3
1010 !
1020 ! OUTSTANDING ORDERS REPORT (INCLUDING ALL DETAIL)
1030 !
1040 INTEGER S(9), Product_no,Prod_no
1050 DIM B$[12],P$[10],Buf$[170]
1060 DIM Desc$[30],Order_no$[30],Name$[30],
 Option_desc$[10]
1070 DISP “Cr/H Cl/S”; ! CLEAR SCREEN
1080 ON ERROR GOTO Error ! SET UP ERROR AND HALT TRAPS
1090 ON HALT GOTO Halt
1100 B$=” SAD,SALES”
1110 P$=”MANAGER”

159

Example Operations
Eloquence DBMS Programming Examples

1120 DBOPEN (B$,P$,1,S(*)) ! OPEN FOR SHARED ACCESS
1130 IF S(0) THEN Dberr
1140 !
1150 ! SET UP ALL APPROPRIATE RELATIONSHIPS
1160 !
1170 DBASE IS B$
1180 IN DATA SET “PRODUCT” USE Prod_no,Desc$
1190 IN DATA SET “CUSTOMER” USE ALL
1200 IN DATA SET “OPTION” USE SKP 1,Option_desc$,P0
1210 !
1220 ! INITIALIZE VARIABLES & PRINT REPORT HEADER
1230 !
1240 Rep:Total=Master_total=0
1250 Eof=11
1260 PRINT TAB(30);”OUTSTANDING ORDERS LIST”;LIN(1)
1270 PRINT “PRODUCT”;SPA(8);”ORDER NUMBER”;SPA(10);
 “CUSTOMER NAME”;SPA(9);”OPTIONS”;SPA(8);”PRICE”;
 LIN(1);RPT$(”=”,79);LIN(1)
1280 !
1290 ! PRODUCE THE REPORT
1300 !
1310 Start_report:DBGET (B$,”PRODUCT”,2,S(*),”@”,Buf$,0)
1320 IF S(0)=Eof THEN End_report
1330 IF S(0) THEN Dberr
1340 !
1350 ! PRINT HEADER FOR PRODUCT
1360 !
1370 PRINT VAL$(Prod_no);” (”;TRIM$(Desc);”)”
1380 DBFIND (B$,”CUSTOMER”,1,S(*),”PRODUCT-NO,Prod_no)
1390 IF S(0) THEN Dberr
1400 FOR I=1 TO S(5)
1410 DBGET (B$,”CUSTOMER”,5,S(*),”@”,Buf$,0)
1420 IF S(0) THEN Dberr
1430 !
1440 ! PRINT HEADER FOR ORDER
1450 !
1460 PRINT TAB(20);Order_no$;TAB(38);Name$[1,21];
1470 DBFIND (B$,”OPTION”,1,S(*),”ORDER-NO”,Order_no$)

1480 IF S(0) THEN Dberr
1490 FOR J=1 TO S(5)
1500 DBGET (B$,”OPTION”,5,S(*),”@”,Buf$,0)
1510 IF S(0) Then Dberr
1520 !
1530 ! PRINT OPTIONS
1540 !
1550 PRINT TAB(60);
1560 PRINT USING Itm_image;Option_desc$,P0
1570 Itm_image:IMAGE 10A,2X,5D.DD
1580 !
1590 ! ACCUMULATE TOTALS
1600 !
1610 Total=Total+P0
1620 Sub_total=Sub_total+P0
1630 Master_total=Master_total+P0
1640 NEXT J
1650 PRINT TAB(71);
1660 PRINT USING Sub_image;Sub_total
1670 Sub_total=0
1680 NEXT I
1690 !

160

Example Operations
Eloquence DBMS Programming Examples

1700 ! PRINT TRAILER FOR PRODUCT
1710 !
1720 PRINT TAB(70);
1730 PRINT USING Tot_image;VAL$(Prod_no),Total
1740 Total=0
1750 GOTO Start_report
1760 !
1770 ! PRINT FINAL TOTALS
1780 !
1790 End_report:PRINT USING Mstr_image;Master_total
1800 GOTO Close
1810 Sub_image:IMAGE 8(”-”) / 71X,5D.DD /
1820 Tot_image:IMAGE 9(”=”) / 11X,”TOTAL ORDERS FOR “,10A,32X,6D.DD
/
1830 Mstr_image:IMAGE // 31X,”TOTAL ORDERS”,24X,”$”8D.DD /
70X,9(”=”)
1840 !
1850 ! ERROR AND HALT TERMINATION ROUTINES
1860 !!
1870 Dberr:DISP LIN(2);”STATUS ERROR “;VAL$(S(0));” IN LINE”; S(6)
1880 GOTO Close
1890 Error: DISP LIN(2);”UNEXPECTED “;ERRM$
1900 GOTO Close
1910 Halt:PRINT LIN(2)
1920 Close:DBCLOSE (B$,” “,1,S(*))
1930 DISP LIN(2);”END OF OUTSTANDING ORDERS REPORT.”
1940 END

In line 1070 of the above program, the charactersCr/H andCl/S should be
replaced by the cursor home and clear display special control characters respec-
tively.

Example Program 4

The last two programs are used to enter new products into the database and make
modifications and deletions to existing products. Example program 4 allows new
products to be added to the database. Since write operations must be performed,
the database is opened in mode 3 (see line 1130). This program also contains the
necessary lines to trap HALTs and errors (see lines 1090 and 1100).

When the program is first RUN it produces a screen like that shown below.

161

Example Operations
Eloquence DBMS Programming Examples

Press EXIT PROGRAM to terminate the program. Otherwise, a new product
number is entered and the program prompts for a product description. Note that
the set capacity and the current number of entries are displayed. This information
is obtained via DBINFO in line 1330. Note also that since the result of DBINFO
is left in the buffer, an UNPACK is used (line 1350) to extract these values into
integer variables. Since integers range from−231 through +231−1 and capacities
range from 1 through 999,999, a conversion is necessary. The FNCorrect function
defined in line 1240 provides this conversion.

The same would be possible using a DINTEGER variable to unpack instead of 2
INTEGERS.

If a duplicate product number is entered, the program displays an error and
prompts for a correction. For example:

162

Example Operations
Eloquence DBMS Programming Examples

This duplicity is detected by attempting a calculated access (line 1460) of the
master for the product using the given product number.

If the specified product is not found, the product description is requested as shown
here:

After the description is entered, a DBPUT (line 1600) is used to store the new
product in the database. The program then reports that the DBPUT was successful
and gives two options which are key selected.

163

Example Operations
Eloquence DBMS Programming Examples

The user can either add ANOTHER product or EXIT the program.

1000 ! EXAMPLE PROGRAM 4
1010 !
1020 ! ADD NEW PRODUCT
1030 !
1040 INTEGER S(9),Prod_no,Entries,Capacity,Entries2,Capacity2
1050 DIM B$[12],P$[10],Buf$[170]
1060 DIM Desc$[30]
1070 DISP “Cr/H Cl/S”; ! CLEAR SCREEN
1080 DISP TAB(32);”ADD NEW PRODUCT’
1090 ON ERROR GOTO Error !SET UP ERROR AND HALT TRAPS
1100 ON HALT GOTO Halt
1110 B$=” SAD,SALES”
1120 P$=”MANAGER”
1130 DBOPEN (B$,P$,3,S(*)) ! OPEN FOR EXCLUSIVE ACCESS
1140 IF S(0) THEN Dberr
1150 !
1160 ! SET UP ALL APPROPRIATE RELATIONSHIPS
1170 !
1180 DBASE IS B$
1190 IN DATA SET “PRODUCT” USE Prod_no,Desc$
1200 !
1210 ! FUNCTION TO CONVERT TWO 16-BIT INTEGERS TO
1220 ! ONE 32-BIT INTEGER
1230 !
1240 DEF FNCorrect(INTEGER N,N2)=N2+N*65536
1250 !
1260 ! INITIALIZE
1270 !
1280 Not_found=17
1290 ON KEY #8:”EXIT” GOTO Halt
1300 ON KEY #16 GOTO Halt
1310 Cont:DISP “Cr/H”;LIN(3);”Cl/S”;LIN(10)
1320 OFF KEY #1,9
1330 DBINFO (B$,”PRODUCT”,202,S(*),Buf$)
1340 UNPACK USING Fmt;Buf$

164

Example Operations
Eloquence DBMS Programming Examples

1350 Fmt:PACKFMT 28X,Entries,Entries2,Capacity,Capacity2
1360 DISP “CURRENT NUMBER OF ENTRIES :”;FNCorrect(En-
tries,Entries2);
 LIN(2)
1370 DISP “SET CAPACITY: “;FNCorrect(Capacity,Capacity2)
1380 !
1390 ! ASK FOR NEW PRODUCT NUMBER
1400 !
1410 Again:DISP “Cr/H”;LIN(3)
1420 Badp=-1 ! ALLOW FOR A NULL USER RESPONSE.
1430 INPUT “Enter the number of the product you wish to add.”,
 Prod_no
1440 IF Prod_no%<1 THEN Badp
1450 DBGET (B$,”PRODUCT”,7,S(*),”@”,Buf$,Prod_no)
1460 IF S(0)=Not_found THEN Enter

1470 IF S(0) THEN Dberr
1480 DISP “PRODUCT ALREADY IN DATABASE.”
1490 BEEP
1500 GOTO Again
1510 Badp:DISP “ILLEGAL PRODUCT NUMBER”
1520 BEEP
1530 GOTO Again
1540 !
1550 ! PUT THE NEW PRODUCT IN THE DATABASE
1560 !
1570 Enter:DISP “Cl/S”
1580 INPUT “Enter product description”,Desc$
1590 DBPUT (B$,”PRODUCT”,1,S(*),”@”,Buf$)
1600 IF S(0) THEN Dberr
1610 DISP “NEW PRODUCT ADDED.”
1620 ON KEY #1:”ANOTHER GOTO Cont
1630 ON KEY #9 GOTO Cont
1640 WAIT
1650 Dberr:DISP LIN(2);”STATUS ERROR “;VAL$(S(0));” IN LINE”;
 S(6)
1660 GOTO Close
1670 Error:DISP LIN(2);”UNEXPECTED “;ERRM$
1680 GOTO Close
1690 Halt:DISP “ END OF ADD PRODUCT PROGRAM.”
1700 Close:DBCLOSE (B$,” “,1,S(*))
1710 END

In lines 1070, 1310, 1570 and 1690 of the above program, the charactersCr/H
andCl/S should be replaced by the cursor home and clear display special control
characters respectively.

Example Program 5

Example program 5 allows products in the PRODUCT data set to be changed or
deleted. The program prompts for the number of the product to be edited. The
EXIT key can be pressed at any time to stop the program. The initial display is as
follows:

165

Example Operations
Eloquence DBMS Programming Examples

If a number is entered for a non-existent product, it is detected by the calculated
access DBGET in line 1330, as shown by the following screen:

Note that the database was opened in mode 1. Line 1310 locks the database. It is
essential that the database be locked before the DBGET. If it is locked afterwards,
another user could lock the database anytime before the lock in this program and
then make modifications to the record retrieved in line 1330. If such a user deleted
the record, a subsequent DBUPDATE or DBDELETE would fail.

166

Example Operations
Eloquence DBMS Programming Examples

Once a correct product number has been provided, the old description is displayed
for user edit:

The ANOTHER key can be pressed here to abort the modification and return to
the initial display.

If the description is altered andRETURN is pressed, the DBUPDATE line (1520)
alters the text of the product description in the database. In this case, either
ANOTHER or EXIT PROGRAM is pressed to continue:

167

Example Operations
Eloquence DBMS Programming Examples

If the DELETE key is pressed, the product is removed from the database (see line
1670). The program then indicates that the delete was successful and waits for the
user to respond with the appropriate key:

If the entry in the PRODUCT master had any entries associated with it in the
CUSTOMER detail, an error would have been issued (see line 1690).

Note that extreme care must be taken so that DBUNLOCKs are performed either
after a successful operation or following an error (see lines 1350, 1550 and 1600).
The DBCLOSE in line 1780 automatically performs the unlock in case either
HALT or EXIT PROGRAM is pressed or an unforeseen error occurs.

1000 ! EXAMPLE PROGRAM 5
1010 !
1020 ! PRODUCT EDITOR
1030 !
1040 INTEGER S(9),Prod_no
1050 DIM B$[12],Buf$[170]
1060 DIM Desc$[30]
1070 DISP “Cr/H Cl/S”; ! CLEAR SCREEN
1080 DISP TAB(34);”EDIT PRODUCT”
1090 ON ERROR GOTO Error ! SET UP ERROR AND HALT TRAPS
1100 ON HALT GOTO Halt
1110 B$=” SAD,SALES”
1120 P$=”MANAGER”
1130 DBOPEN (B$,P$,1,S(*) ! OPEN FOR SHARED ACCESS
1140 IF S(0) THEN Dberr
1150 !
1160 ! SET UP ALL APPROPRIATE RELATIONSHIPS
1170 !
1180 DBASE IS B$
1190 IN DATA SET “PRODUCT” USE Prod_no,Desc$
1200 !

168

Example Operations
Eloquence DBMS Programming Examples

1210 ! INITIALIZE AND ASK FOR PRODUCT NUMBER
1220 !
1230 Not_found=17
1240 Chain_not_empty=44
1250 ON KEY #8:”EXIT” GOTO Halt
1260 ON KEY #16 GOTO Halt
1270 Cont:DISP “Cr/H”;LIN(3);”Cl/S”;
1280 OFF KEY #1,9
1290 Again:DISP “Cr/H”;LIN(3);
1300 INPUT “Enter the number of the product you wish to edit.”,
 Prod_no
1310 DBLOCK (B$,” “,1,S(*)) ! LOCK DATABASE BEFORE WRITE
1320 IF S(0) THEN Dberr
1330 DBGET (B$,”PRODUCT”,7,S(*),”@”,Buf$,Prod_no)
1340 IF S(0) %<> Not_found THEN Maybe
1350 DBUNLOCK (B$,” “,1,S(*))!UNLOCK THE DATABASE AFTER AN ERROR
1360 IF S(0) THEN Dberr
1370 DISP “NO SUCH PRODUCT IN DATABASE.”
1380 BEEP
1390 GOTO Again
1400 Maybe:IF S(0) THEN Dberr
1410 !
1420 ! GET NEW DESCRIPTION AND PERFORM THE UPDATE
1430 !
1440 DISP “Cl/S”
1450 Desc$=Trim$(Desc$)
1460 ON KEY #5:”DELETE” GOTO Del
1470 ON KEY #13 GOTO Del
1480 EDIT “Enter New description”,Desc$
1490 OFF KEY #5,13
1500 DBUPDATE (B$,”PRODUCT”,1,S(*),”@”,Buf$)
1510 IF S(0) THEN Dberr
1520 DISP “UPDATE COMPLETE.”
1530 WAIT:DBUNLOCK (B$,” “,1,S(*)) ! UNLOCK DATABASE AFTER WRITE
1540 IF S(0) THEN Dberr
1550 ON KEY #1:”ANOTHER GOTO Cont
1560 ON KEY #9 GOTO Cont
1570 WAIT
1580 !
1590 ! DELETE THE ENTRY
1600 !
1610 Del:OFF KEY #5,13
1620 DBDELETE (B$,”PRODUCT’,1,S(*))
1630 IF S(0) %<>Chain_not_empty THEN Del2
1640 DISP LIN(1);”THERE ARE STILL ORDERS FOR THIS PRODUCT.”
1650 BEEP
1660 GOTO Wait
1670 De12:IF S(0) THEN Dberr
1680 DISP LIN(1);”PRODUCT DELETED.”
1690 GOTO Wait ! GO DO UNLOCK.
1700 !
1710 ! TERMINATION ROUTINES
1720 !
1730 Dberr:DISP LIN(2);”STATUS ERROR “;VAL$(S(0));” IN LINE”;
 S(6)
1740 GOTO Close
1750 Error:DISP LIN(2);”UNEXPECTED “;ERRM$
1760 GOTO Close
1770 Halt:DISP “Cr/H END OF EDIT PRODUCT PROGRAM.”
1780 Close:DBCLOSE (B$,” “,1,S(*))
1790 END

169

Example Operations
Eloquence DBMS Programming Examples

In lines 1070, 1270, 1290, 1440 and 1770 of the above program, the characters
Cr/H andCl/S should be replaced by the cursor home and clear display special
control characters respectively.

170

Example Operations
Database Locking

Database Locking

Locking is a means of communication and control used by mutually cooperating
programs. A lock on a particular section of the database prevents other programs
from modifying that section. DBLOCK is used only on databases opened in mode
1, shared write access. In access mode 3 and 8, DBLOCK is ignored.

The DBLOCK statement operates in one of twelve modes. Modes 1 through 6
apply a write lock to the section specified; modes 11 through 16 apply a read lock
to the section specified. Modes 1, 2, 11, and 12 are used to lock an entire database.
Modes 3, 4, 13, and 14 are used to lock a data set. Modes 5, 6, 15, and 16 are used
to lock an entry or group of entries specified by a lock descriptor.

A program can read a section of the database without locking it even if the section
is locked by another program. If a second program is modifying the database dur-
ing the read, unexpected results can occur. For example, while a program is per-
forming chained GET’s, the address of the next entry can be modified by a second
program. To prevent this, the appropriate data set or entries in the data set should
be locked.

Locks used to protect read operations should be read locks. A read lock prevents
other programs from getting a write lock on an entry, thus preventing any modifi-
cation of that entry. A read lock will not prevent other programs from getting a
read lock on the same entry. The shared read modes allow for greater access to the
database while preventing write operations.

The DBLOCK operation makes no modifications to the database itself. The
entries locked do not have to exist in the database. This will be the case when a
new entry is created by a DBPUT.

Lock Descriptors

In modes 5, 6, 15, and 16, the program specifies the entries to be locked through a
lock descriptor. A descriptor consists of a set name, a relational operator, and an
associated value. (Refer to page 94 for a complete description). Multiple descrip-
tors can be concatenated to build complex locks. The string of lock descriptors,
called a lock predicate, is passed to the locking system in the QUALIFIER param-
eter of DBLOCK.

171

Example Operations
Database Locking

If @ is specified for the data set name, Eloquence DBMS interprets this to mean
“lock all data sets” (meaning, the whole database. This is equivalent to the opera-
tion of modes 1, 2, 11, and 12). Similarly, if @ is specified for the item name, the
interpretation is “lock all items” in the specified data set (meaning, lock that data
set; equivalent to modes 3, 4, 13, and 14).

Eloquence DBMS also allows set name to be @ with item name, relational opera-
tor, and value specified for a desired entry value. This means “lock this entry
wherever it occurs in any set”.

A lock descriptor is a string expression with a very specific format, as described
below:

Length One word integer containing the physical length in words of
this descriptor. The length includes the length parameter itself.

Set Name Eight words containing the name of an existing Eloquence
DBMS data set up to 15 bytes long padded on the right with
blanks or a set number stored as a binary integer from 1 through
99 in the first word; the remaining seven words are ignored. If
the first (leftmost) byte of the name is @, then the remaining 15
bytes are ignored and Eloquence DBMS interprets this to mean
“all sets in the database”. If the first word of this field is a
binary zero, the whole predicate is ignored.

Item Name Eight words containing the name of an existing Eloquence
DBMS data item (need not be a key item) up to 15 bytes long
padded on the right with blanks or an item number stored as a
binary integer from 1 through 1024 in the first word; the
remaining seven words are ignored If the first (leftmost) byte of
this field is @, then the remaining 15 bytes are ignored. Elo-
quence DBMS interprets the @ to mean “all items in the set”
(the whole set); the value field is ignored.

Relop One word containing one of these relational operators stored in
its ASCII representation:

ASCII Comarison
= equal
>= greater than or equal
<= less than or equal

Lexical Comparison
EQ equal
GE greater than or equal

172

Example Operations
Database Locking

LE less than or equal

NOTE: Lexical comparison is currently handled the same as ASCII comparison.

For the equal operator, the operator character can appear in
either byte and the other byte must be a blank character (octal
40).

Value The value of the specified item to be locked. It should be stored
exactly as stored within the database. However, for numeric
types, Eloquence DBMS will perform any necessary conver-
sion, if possible. If a conversion error is caused by a length
incompatibility or size incompatibility, Eloquence DBMS
returns a status error. Eloquence DBMS uses as many words as
required by the corresponding item definition. If a string value
is given that is shorter than that specified for the item, blanks
are added as needed. If the string value is longer, it is truncated.

Setting Up Predicates

The predicates required by DBLOCK in modes 5, 6, 15, and 16 can be created by
several methods. Simply building a string expression with concatenation can be
the first approach. For example:

CHR$(0) & CHR$(21) & Set$ & Item$ & “%<=” & “GEORGE”

NOTE: The example above implies a CPU with big endian byte order (eg. HPPA). For litte endian
system (eg. Intel) the CHR$(0/21) must be exchanged.

The one-word integer length field is formed by two-byte values using the CHR$
function. The length value must be carefully specified to include the complete
descriptor. The Set$ and Item$ strings must have a current length of 16.

The PACK USING statement can also be used to construct a predicate. The next
sequence could be used in a program to lock PRODUCT-NO=16117 in the data
set PRODUCT.

100 INTEGER N, Product_no, Stat(9)
110 DIM Q$[40],Lock_set$[16],Lock_item$[16],Relop$[2]
120 Product_no=16117
130 Lock_item$=”PRODUCT-NO ”
140 Lock_set$=”PRODUCT ”
150 Relop$=”= ”
160 N=19
170 Mode=5
180 PACK USING 190;Q$
190 PACKFMT N, Lock_Set$, Lock_item$, Relop$, Product_no

173

Example Operations
Database Locking

200 DBLOCK (Base$, Q$, Mode, Stat(*))
*
*
*

The disadvantage of these methods is that the programmer must manually specify
the descriptor length and guarantee the correct length for each field. The PREDI-
CATE statement computes the descriptor length and insures that the format is cor-
rect. To create the descriptor in the previous example, the programmer need only
write the following:

500 PREDICATE Q$ FROM “PRODUCT”,”PRODUCT-NO”,”=”,16177

The programmer can often choose from many equivalent lock sequences. For
example, to apply a read lock to the data set LOCATION, the programmer could
use any of the following sequences:

200 INTEGER N, Stat(9)
210 DIM Lock_set$[16],Lock_item$[16],Q$[40]
220 Lock_item$=”@”
230 Lock_set$=”LOCATION”
240 N=17
250 PACK USING 170;Q$
260 PACKFMT N,Lock_set$,Lock_item$
270 DBLOCK (Base$,Q$,15,Stat(*))

*
*
*

or

200 Mode=13
210 Lock_set$=”ITEM-MASTER”
220 DBLOCK (Base$,Lock_set$,Mode,Stat(*))

*
*
*

or

200 PREDICATE P$ FROM ”ITEM-MASTER”,”@”
210 DBLOCK (Base$,P$,16,Stat(*))

*
*
*

Multiple descriptors can be combined in a predicate to specify complex locks.
Descriptors can be combined by concatenation or by specifying multiple set-item-
value groups on the PREDICATE statement. The following example locks the
data set LOCATION as well as all values of PRODUCT-NO less than or equal to
10,000 in the data set PRODUCT.

110 INTEGER Lock_itemnum,Stat(9)

174

Example Operations
Database Locking

120 DIM Q$[40],Lock_set$(1:2)[16],Relop$[2]
130 Lock_item$=”@”
140 Lock_itemnum=14 ! ITEM #14 for PRODUCT-NO.
150 Lock_set$(1)=”LOCATION “
166 Lock_set$(2)=”PRODUCT “
170 Relop$=”<=”
180 Keyinfo=10000
190 Mode=5
200 PREDICATE Q$ FROM Lock_set$(1),Lock_item$;Lockset$(2),
Lock_itemnum,Relop$,Keyinfo
210 DBLOCK (Base$,Q$,Mode,Stat(*))
 *
 *
 *

The maximum length of a predicate string is 4095 bytes.

Lock Conflicts

The locking system recognizes and acts upon the relationships that implicitly exist
between lock descriptors. For example, an attempt to lock a data set must wait if
the whole database is locked or if an item/value within the set is locked.

It is also necessary to restrict entry lock requests such that at any one time only a
single item name in a data set can be used for locking purposes. Lock requests on
different values of the same item are acceptable. However, the locking system
cannot determine if the collection of entries locked using different item names
have any entries in common. In this case, DBLOCK assumes that a conflict exists
and queues the later request or returns a status error.

When a request is queued, no other request which would conflict with the request
in queue is granted. For example, assume program A has locked a data entry in
data set X, and program B wants to lock data set X and data set Y. Program B’s
request is queued. When program C requests to lock a data entry in data set Y, that
request is queued because program B is waiting to lock data set Y.

When using DBLOCK wait modes, the programmer should be careful to avoid
possible deadlock conditions. If a program makes multiple resource requests
using the commands DBLOCK, LOCK# or REQUEST, a potential deadlock can
occur if another program is also making requests for the same resources. For
example, suppose program A holds resource 1 and is queued waiting for resource
2 which is held by program B. If program B makes a wait request for resource 1, a
deadlock situation occurs. Programs requesting the same resources can avoid
deadlock by making their resource requests in the same order.

175

Example Operations
Database Locking

The following table summarizes the conditions for granting a lock:

Table 9 Lock conditions

Lock Request Conflicting Lock Action

Whole database-
write-lock

Whole database already write-locked. Wait

Whole database already read-locked. Wait

One or more sets write-locked. Block and wait *

One or more sets read-locked. Block and wait *

One or more item/values write-locked. Block and wait *

One or more item/values read-locked. Block and wait *

Whole database-
read-lock

Whole database already write-locked. Wait

Whole database already read-locked. Grant lock

One or more sets write-locked. Block and wait *

One or more sets read-locked. Grant lock

One or more item/values write-locked. Block and wait *

One or more item/values read-locked. Grant lock

Whole data set-
write-lock

Whole database already write-locked. Wait

Whole database already read-locked. Wait

Requested set write-locked. Wait

Requested set read-locked. Wait

One or more item/values in requested set
write-locked.

Block and wait *

One or more item/values in requested set
read-locked.

Block and wait *

Whole data set-
read-lock

Whole database already write-locked. Wait

Whole database already read-locked. Grant lock

176

Example Operations
Database Locking

 * “Block” means that no more locks capable of impending the request will be
granted.

Requested set write-locked. Wait

Requested set read-locked. Grant lock

One or more item/values in requested set
write-locked.

Block and wait *

One or more item/values in requested set
read-locked.

Grant lock

Table 10 Predicate Lock conditions

Lock Request Conflicting Lock Action

Item/value inset
write-lock

Whole database already write-locked. Wait

Whole database already read-locked. Wait

Set write-locked. Wait

Set read-locked. Wait

Requested item/value write-locked. Wait

Requested item/value read-locked. Wait

Different item in set write-locked. Block and wait *

Different item in set read-locked. Block and wait *

Item/value inset
read-lock

Whole database already write-locked. Wait

Whole database already read-locked. Grant lock

Set write-locked. Wait

Set read-locked. Grant lock

Requested item/value write-locked. Wait

Requested item/value read-locked. Grant lock

Table 9 Lock conditions

Lock Request Conflicting Lock Action

177

Example Operations
Database Locking

 * “Block” means that no more locks capable of impending the request will be
granted.

Different item in set write-locked. Block and wait *

Different item in set read-locked. Grant lock

Table 10 Predicate Lock conditions

Lock Request Conflicting Lock Action

178

Example Operations
Database Locking

179

A

Pack Statements

180

Pack Statements
Introduction

Introduction

The Pack statements provide a convenient means of transferring string and
numeric data to and from a string variable. The UNPACK USING statement is
particularly useful in conjunction with certain DBINFO modes, in which database
information is returned in a string variable as a combination of ASCII characters
and numeric integers.

Three Pack statements are available:

PACKFMT Specifies the data format for a PACK USING or UNPACK
USING statement.

PACK USING Transfers data from variables in a pack list to a destination
string.

UNPACK USING Transfers data from a source string to variables in a pack list.

The PACKFMT Statement

 PACKFMTpack list

The parameter is as follows:

pack list A list of program variables, arrays, and/or skip fields separated
by commas. This list contains an ordered set of variable names
used by the PACK USING and UNPACK USING statements.

PACKFMT (pack format) defines a list of variables to be used in conjunction with
a source or destination string referenced in an UNPACK USING or a PACK
USING statement. Upon PACK USING execution, data is transferred from the
PACK USING list variables to the destination string. Upon UNPACK USING
execution, data is transferred from the source string to the pack list variables.

As the transfer occurs between the pack list variables and the string referenced in
PACK USING or UNPACK USING, an internal pointer to the string’s next posi-
tion is updated. To skip character positions within the string, a skip indicator may
be supplied in the appropriate position of the pack list (for example,1X=one byte,
2X=two bytes). The PACK USING and UNPACK USING program examples, on
the following pages, illustrate the use of the PACKFMT statement and the skip
indicator.

181

Pack Statements
Introduction

The PACK USING Statement

 PACK USINGline id; destination string

The parameters are as follows:

line id A line number or line label referencing the pack list.

destination stringA string variable that receives data contained in variables listed
in a PACKFMT statement.

The PACK USING statement transfers data from each variable of the appropriate
pack list to the destination string. The pack list is located on a separate program
line. As the data is transferred to the destination string, its format is not altered in
any way. Thus, a real-precision number requires eight bytes in the buffer; a short-
precision number requires four bytes; and so on. When transferring a string from
the pack list having a current length less than its dimensioned (or substring)
length, the destination string is filled with blanks to equal the dimensioned (or
substring) length.

The following example illustrates the use of the PACK USING statement:

10 INTEGER A
20 SHORT B
30 REAL C
40 DIM D$[10],E$[50]
50 A=47
60 B=89.5432
70 C=2.3456789
80 D$=”IMAGE”
90 PACK USING Here;E$
100 END
110 Here: PACKFMT A,B,2X,D$,14X,C

After executing line 90, E$ contains the following:

Bytes Value

1-2 Integer variable A

3-6 Short variable B

7-8 Skipped

9-18 String variable D$(Last 5 bytes are padded with
spaces)

19-32 Skipped

33-40 Real variable C

41-50 Filled with spaces

182

Pack Statements
Introduction

Example with User Defined Types:

10 DIM T AS Type
 *
 *
 *
200 PACK USING Here;F$
 *
 *
230 Here: PACKFMT STRUCT T

The UNPACK USING Statement

 UNPACK USINGline id; source string

The parameters are as follows:

line id A line number or line label referencing a PACKFMT statement.

source string A string expression that contains data to be unpacked into vari-
ables listed in a PACKFMT statement.

Through the UNPACK USING statement, data is transferred from the source
string to the variables appearing in the pack list. A one-to-one transfer is done
without altering the data format. When transferring data to short- or real-precision
variables, UNPACK USING verifies that the data qualifies as a valid numeric
value.

The following example illustrates the use of the UNPACK USING statement:

10 DIM A$[12],F$[40]
20 INTEGER X1,X2

*
*
*

200 UNPACK USING Here;F$
210 DISP X1,A$,X2
220 END
230 Here: PACKFMT 4X,X1,A$,X2

183

Pack Statements
Introduction

After executing line 200, variables X1, X2 and A$ contain the following informa-
tion:

Example with User Defined Types:

10 DIM T AS Type
 *
 *
 *
200 UNPACK USING Here;F$
210 PRINT STRUCT T
220 END
230 Here: PACKFMT STRUCT T

Variable Bytes in F$

X1 5-6

X2 19-20

A$ 7-18

184

Pack Statements
Introduction

185

B

DBML Syntax

186

DBML Syntax
Schema Definition

Schema Definition

BEGIN DATABASEdatabase name ;
DEFAULT LANGUAGEcollating sequence;
PASSWORDS:

user-class number password ;

ITEMS:
item name ,[sub-item count] specifier [(control no.)];

 . . .
IITEMS:

iitem name = item name [: length][, item name ...];
 . . .
SETS:

list of data set definitions
END.

Schema Definition Parameters
database name 1 through 6 character database name, beginning with a letter

and containing uppercase letters, digits and dashes.

collating sequenceA language plus a modifier as your default collating sequence
(optional).

user-class numberAn integer from 1 through 31.

password A string of from 1 through 8 characters not including the semi-
colon, tabs, blanks. Embedded blanks are removed.

item name A 1 through 15 character item name, beginning with a letter
and containing uppercase letters, digits and dashes.

sub-item count An integer which specifies the replication count for the item
whose specifier it precedes.

specifier A specifier of the item type. It is eitherL, R8, S, R4, I , I2, orX.
In the case ofX, it is followed by an integer specifying the
string length.

iitem name A 1 through 15 character iitem name, beginning with a letter
and containing uppercase letters, digits and dashes.

length Integer specifying substring length of the item to be used as
part of the index.

control no. An integer from 0 through 127. This number can be retrieved
by DBINFO. It is used by Eloquence Query to determine the
format used to print any data associated with that item.

187

DBML Syntax
Data Set Definition Syntax

Data Set Definition Syntax

Manual Master Data Set Definition

[item name ,]
[item name ,]

...
[item name];

Automatic Master Data Set Definition

NAME:

N:

set name,
MANUAL

M

(read list/write list);

ENTRY:

E:

item name (path count)[] ,

CAPACITY:

C:

maximum-entry count;

NAME:

N:

set name,
AUTOMATIC

A

(read list/write list);

ENTRY:

E:

item name(path count);

CAPACITY:

C:

maximum-entry count;

188

DBML Syntax
Data Set Definition Syntax

Detail Data Set Definition

[item name [(master-set name)],]
[item name [(master-set name)],]

. . .
[item name [(master-set name)]];

Data Set Definition Parameters
set name A 1 through 15 character data set name, beginning with a letter

and consisting of uppercase letters, digits and dashes.

read list A list of user-class numbers (including 0) separated by com-
mas. The list can be null.

write list A list of user-class numbers (including 0) separated by com-
mas. The list cannot be null.

path count An integer from 1 through 16 corresponding to the number of
paths between this master and the associated detail sets.

maximum-entry countAn integer.

master-set nameThe name of a previously listed master data set.

collating sequenceSlash followed by language name and (optionally) a modifier:

 / language [@modifier]

NAME:

N:

set name,
DETAIL

D

(read list/write list);

ENTRY:

E:

item name (master-set name)[] ,

CAPACITY:

C:

maximum-entry count;

189

DBML Syntax
DBML Statements and Advanced Access

DBML Statements and Advanced Access

 DBLOGON (user$, pass$)

The DBLOGON statement saves the authorization information which should be
used subsequently when connecting a database serever.

 DBOPEN (base$, pass$, status(*))

The DBOPEN statement opens the database for access and defines the type of
access allowed (for example, read-only, exclusive, or shared).

The DBCLOSE statement closes the database and updates all information in the
root file. The set parameter is ignored.

The DBGET statement is used to retrieve information from the database. If an IN
DATA SET is active on the specified set, buf$ will be unpacked into the appropri-
ate variables.

The DBUPDATE statement is used to modify values in an existing record in the
database (search item values cannot be modified). If an IN DATA SET is active on
the specified data set, buf$ will be updated with the current values of the appropri-
ate variables before the operation.

DBCLOSE (base$,
set

set$

, mode, status(*))

DBGET (base$,
set

set$

, mode, status(*), list$, buf$,
arg

arg$

)

DBUPDATE (base$,
set

set$

, mode, status(*), list$, buf$)

DBPUT (base$,
set

set$

, mode, status(*), list$, buf$)

190

DBML Syntax
DBML Statements and Advanced Access

The DBPUT statement is used to add new entries to sets of type detail or manual.
If an IN DATA SET is active on the specified set, buf$ will be updated with the
current values of the appropriate variables before the operation.

The DBDELETE statement is used to remove entries from sets of type detail or
manual.

The DBFIND statement is used to find the head of a chain in a detail data set.

The DBINFO statement provides general information about the database.

The DBLOCK statement locks the entire database or sections of the database so
modifications can be performed when the database is open in shared mode.

The DBUNLOCK statement unlocks a database or section of the database that
was locked with a previous DBLOCK.

 PREDICATEpredicate$ FROM set1 [,item1 [,relop, value]] [;set2 . . .[;setn]]

The PREDICATE statement defines a section of the database to be locked with the
DBLOCK statement.

DBDELETE (base$,
set

set$

, mode, status(*))

DBFIND (base$,
set

set$

, mode, status(*),
item

item$

,
value

value$

)

DBINFO (base$,
qual

qual$

, mode, status(*), buf$)

DBLOCK (base$,

set

set$

predicate$

, mode, status(*))

DBUNLOCK (base$,
set

set$

, mode, status(*))

191

DBML Syntax
DBML Statements and Advanced Access

 DBBEGIN (comment$, mode, status(*))

The DBBEGIN statement begins a new (sub-) transaction. When this is the first
transaction, it is called top level transaction. No modifications are permanently
saved in the Eloquence A.06.00 data base until the top level transaction is com-
mitted. A subsequent DBBEGIN begins a new subtransaction, which can be con-
trolled separately with the DBCOMMIT and DBROLLBACK statements.

 DBCOMMIT (mode, status(*))

The DBCOMMIT statement commits a transaction. If this is a top level transac-
tion, modifications are made permanently in the data base. If a subtransaction is
committed, it becomes part of its parent transaction.

 DBROLLBACK (id, mode, status(*))

The DBROLLBACK statement is used to undo a pending transaction. If this is a
top level transaction, all pending modifications are reverted. If applied to a sub-
transaction all modifications including the enclosing DBBEGIN statement are
reverted.

 Msg$ = DBEXPLAIN$(n)
 Msg$ = DBEXPLAIN$(status(*))

The DBEXPLAIN$ function translates the given status into a descriptive mes-
sage.

 DBASE ISbase$

The DBASE IS statement is used to specify the database before any IN DATA
SETs.

IN DATA SET
set

set $

IN COM[]

USE ALL

USE item list

DIM ALL

USE REMOTE LISTSline id list

USE STRUCTvariable

DEFINE TYPE typename

IN DATA SET
set

set$

FREE

192

DBML Syntax
DBML Statements and Advanced Access

The IN DATA SET statement defines the automatic packing or unpacking proce-
dure to be performed. Packing or unpacking of the buffer string is performed
whenever a DBGET, DBUPDATE or DBPUT is executed on the specified data set
(of the database specified by the last DBASE IS statement). The FREE option
allows the automatic packing and unpacking to be turned off.

The IN DATA SET LIST statement is a non-executable statement which is refer-
enced by an IN DATA SET with the USE REMOTE LISTS option. This option is
used when the USE list is too long to store as one program line.

The IN DATA SET ... DEFINE TYPE statement can be used to define a type from
a data set definition.

193

DBML Syntax
DBML Statements and Advanced Access

DBML Statement Parameters
base$ A string variable which contains the database name.

pass$ A string expression containing a left-justified string.

set A numeric expression evaluating to a data set number.

set$ A string expression evaluating to a data set name.

mode A numeric expression evaluating to a valid mode.

status An integer array containing at least 10 elements in right-most
dimension, used to return return codes on most DBML state-
ments.

list$ A string expression evaluating to either “@ “, “@;” or “@”. In
all but the first case, any arbitrary character sequence can also
follow.

buf$ A string variable, without any substring specifiers, which is
used to transfer information between an Eloquence program
and a database.

qual A numeric expression evaluating to a valid item, set, or volume
number.

qual$ A string expression evaluating to a valid item, set, or volume
label.

item list A list of string or numeric variables (or arrays) which corre-
spond to items in the data set specified in an IN DATA SET
statement.

line list A list of line numbers or labels which appears in an IN DATA
SET…USE REMOTE LISTS statement. Each line id must
refer to an IN DATA SET LIST statement.

predicate$ A string variable returned by PREDICATE and used as the
qualifier parameter by DBLOCK.

value A string or numeric expression giving the value of the item to
be locked.

item A string expression specifying the data item within the set to be
locked.

comment A string expression providing a comment for the transaction.
This string is recorded in the transaction log, however there are
currently no tools to review them.

194

DBML Syntax
Utility Statements

Utility Statements

 DBCREATEbase$ [;maint$] [,set list$] [,return var]

The DBCREATE statement creates the data sets associated with a root file.
Options are available for creating either all sets or only specific sets. A mainte-
nance password may be specified for the first time DBCREATE is used to define a
password. This password must be used on all subsequent accesses to the database
via utilities statements.

 DBERASEbase$ [;maint$] [,set list$] [,return var]

The DBERASE statement erases all data sets or any group of data sets in the data-
base.

 DBPURGEbase$ [;maint$] [,set list$] [,return var]

The DBPURGE statement purges either all data sets or any group of data sets in
the database.

Utility Statement Parameters
base$ A string expression evaluating to the database name. An

optional volume label or unit specifier can be appended to the
database name.

maint$ A string expression evaluating to the maintenance password.

set list$ A string expression identifying particular data sets. Data sets
are specified by either name or number. Set identifiers are sepa-
rated by commas.

vol spec$ A string expression evaluating to a volume label or unit speci-
fier.

return var A numeric variable in which an error number is returned (refer
to page 197). 0 is returned if no error occurs.

195

DBML Syntax
Obsolete utility statements

Obsolete utility statements

The following statements are no longer supported as of Eloquence A.06.00. A
runtime error 1004 is generated when they are encountered.

 DBSTORE [base$ [TO vol spec$]]

The DBSTORE statement calls the HP-UX script file “dbstore” which backs up
all data sets or any group of data sets in the database.

 DBRESTORE [base$ [FROM vol spec$]]

The DBRESTORE statement calls the HP-UX script file “dbrestore” which
restores the database using data stored previously by DBSTORE.

 DBPASSbase$, user-class number, old password TO new password

This statement changes the password for a stated user-class number.

 DBMAINT base$, old word TO new word

This statement changes the maintenance password for a stated database. The old
word and new word parameters are string expressions from 0 through 16 charac-
ters, excluding nulls and spaces. The old word specified must match the current
maintenance word for the database. The maintenance word is established when
the root file is created via the DBCREATE statement.

196

DBML Syntax
Obsolete utility statements

This statement reads all used passwords from the specified database into a string
array.

 READ DBPASSWORDbase$, maint$; string array variable

This statement re-assigns all passwords in the specified root file with those in a
specified string array.

 READ DBPASSWORDbase$, maint$; string array variable

197

C

Error Messages

This appendix describes all error numbers and associated messages for the follow-
ing components of Eloquence DBMS:

• Database manipulation status errors.

• Pack and Eloquence DBMS execution errors.

• dbimport errors.

198

Error Messages
Eloquence DBMS Status Errors

Eloquence DBMS Status Errors

The following list describes the condition word values for Eloquence DBMS pro-
gramming statements:

0 Successful execution - no error.

-1 No such database. Database is currently opened in an incom-
patible mode. Bad root file reference. Database opened exclu-
sively.

-2 Database in use (Eloquence library only)

-3 User name not recognized

-4 User password does not match

-7 Database lock request was already made in current environ-
ment.

-10 User may not open additional databases, ten are already
opened.

-11 Bad database name or preceding blanks missing.

-12 DBPUT, DBDELETE, or DBUPDATE called with database
not locked.

-14 DBPUT, DBDELETE, and DBUPDATE not allowed in access
mode 8.

-21 Bad password - grants access to nothing. Data item nonexistent
or inaccessible. Data set nonexistent or inaccessible. Data set
volume nonexistent.

-23 User lacks write access to data set.

-24 DBPUT, DBDELETE, or DBUPDATE not allowed on auto-
matic master.

-31 Bad mode. DBGET mode 5 - Specified data set lacks chains.
DBGET mode 7 - Illegal for detail data set.

-52 Item specified is not an accessible search item in the specified
set. Bad LIST variable - must be @\triangle or @; or @.
(\triangle indicates blanks)

199

Error Messages
Eloquence DBMS Status Errors

-91 Root file not compatible with current Eloquence DBMS state-
ments.

-92 Database requires creation.

-94 Data or structure information lost. Database must be erased or
re-created.

-95 No automatic master set entry for current detail. DBDELETE
only.

-96 Corrupt pointer value detected in current data set.

-120 Not enough memory to perform DBLOCK.

-122 Descriptor list bad. Not within string limits.

-123 Illegal relational operator.

-124 Descriptor too short; must be greater than or equal to 9 words.

-125 Bad set name or number.

-126 Bad item name or number.

-127 Attempt to lock using a compound item.

-128 Bad descriptor length for numeric item.

-124 Two descriptors conflict.

-135 Second lock is not allowed in modes 1, 3, 5, 11, 13, and 15.

-136 Descriptor list exceeds 4092 bytes.

-137 Qualifier parameter is of wrong type.

- 800 ISAM error. Last element of status array contains ISAM error
number.

- 801 Volume failure.

- 802 Node related failure.

- 803 FixRec related problem.

- 804 BTREE related problem.

- 805 SysCat related problem.

- 806 System call.

11 End-of-file.

200

Error Messages
Eloquence DBMS Status Errors

12 Directed beginning of file.

13 Directed end of file.

15 End of chain.

16 The data set is full.

17 There is no chain for the search item value. There is no entry
with the specified key value. No current record or the current
record is empty. The selected record is empty.

18 Broken chain.

20 Database locked or contains locks. Status word 3: 0 - database
locked. 1 - data set or entries locked.

22 Data set locked by another process.

23 Entries locked within set.

24 Item conflicts with current locks.

25 Entry or entries already locked.

27 Relational operator type conflict.

32 Transaction nesting exceeds maximum.

33 No transaction active.

41 DBUPDATE will not alter a search item.

43 Duplicate key value in Master.

44 Cannot delete a Master entry with non-empty Detail chains.

50 User’s buffer is too small for requested data.

53 ARGUMENT field type incompatible with search field type
(DBGET, mode 7, or DBFIND). ARGUMENT’s current string
length is less than the string length of the search field.

80 Data set volume is not on-line, or user has not the requested
access rights.

90 Root file volume is not on-line.

94 Corrupt database opened successfully in mode 8.

1xx There is no chain head for path xx.

3xx The automatic master for path xx is full.

201

Error Messages
Eloquence DBMS Status Errors

4xx The master data set for path xx is not currently mounted
(applies to DBPUT and DBDELETE for detail data sets).

Status Array Contents Following an Error

The contents of the status array following an Eloquence DBMS error (a non-zero
condition word) are listed below.

An identification number is associated with each DBML statement as shown
below.

Table 11 Eloquence DBMS status array

Word Description

1 Condition Word

2 through 4 Unchanged

5 0

6 Bits 0 through 11: an id number from 401
through 410 (see table below)

Bits 12 through 15: 0 or the mode value
used to open the database

7 Program line number

8 0

9 The mode parameter value

10 Reserved

Table 12 Eloquence DBMS identification numbers

ID Number DBML Statement

401 DBOPEN

402 DBINFO

403 DBCLOSE

404 DBFIND

405 DBGET

406 DBUPDATE

202

Error Messages
Eloquence DBMS Status Errors

407 DBPUT

408 DBDELETE

409 DBLOCK

410 DBUNLOCK

411 DBCREATE

412 DBERASE

413 DBPURGE

420 DBLOGON

421 DBBEGIN

422 DBROLLBACK

423 DBCOMMIT

Table 12 Eloquence DBMS identification numbers

ID Number DBML Statement

203

Error Messages
Pack and Eloquence DBMS Error Codes

Pack and Eloquence DBMS Error Codes

Error Code Error Description

200 Referenced line not a PACKFMT.

202 Insufficient dimension length in PACK USING statement, or
insufficient current length in UNPACK USING statement.

204 Conversion error.

205 UNPACK USING requires a source string of greater length.

210 Bad status array.

211 No DBASE IS statement active; improper database specified or
database is not open.

212 Data set not found.

213 Excessive variables in list.

214 IN DATA SET already active for data set.

215 Number of elements does not match.

216 Variable type does not match with associated field in set.

217 String length in list insufficient, or length of list array greater
than 255 bytes.

218 Variables not in common.

219 Line referenced is not an IN DATA SET LIST statement.

220 Improper or illegal use of maintenance word.

221 Data set not created.*

225 Improper utility version number in root file.

226 Corrupt database - must recreate it.

227 Corrupt database - must erase it.

320 Set or item specifier is out of range or is an invalid set or item
name.

321 Relational operator is invalid.

204

Error Messages
Pack and Eloquence DBMS Error Codes

322 The predicate specified is not a valid form.

* When executing DBCREATE, DBERASE, or DBPURGE from the keyboard
without a return variable, errors 54, 56, 64, 77, and 221 are not fatal. They are
logged on the CRT along with information on the set to which the error pertains.

205

Error Messages
dbimport Error Messages

dbimport Error Messages

This is a subset of the dbimport error messages:

illegal arguments

bad option(s) specified

no database specified

could be missing option parameter

unable to setup database system

unable to connect to eloquence daemon

illegal volume specification

illegal device specification

illegal database name

bad format: # DATABASE = expected

single file export files must start with the sequence above

importing from database

if importing from single file, dbimport will notify you if the database name in
import file differs from actual one.

Illegal set name

you entered an improper set name on commandline

Messages during data base loading

INTERRUPT

you interrupted dbimport

Fatal error #number while operation

a database status error (number) occured during given operation

Secondary status

this line will be present if an ISAM call failed

bad format: # SETno = name expected

206

Error Messages
dbimport Error Messages

bad format: #item index item name item type expected

Lines starting with a ’#’ character will be used by dbimport to retrieve field names
from input file or to delimit between import sets.

Number of fields exceeds maximum

There is a limit of 2048 field names per set.

set not in backup file

Specified data set name or number not in backup file.

No field names for this set in import file

you specified field names in restructure file, but no field names are present in
import file for this data set

Field name not found

field name specified in restructure file not found in import file

Too many fields to process

import rules too complex. There is a limit of 2048 rules per set.

Illegal type conversion

item type conflicts with value found in import file. Values (from import file) are
converted automaticly if processing in restructure mode. If not in restructure
mode this is considered an error.

Number of values exceeds maximum

Unexpected end-of-line

Value buffer overflow

Missing quote

Illegal numeric value

probably bad input data

Messages during parsing of restructuring specification

Duplicate set specification

duplicate data set restructuring specification

from set number must be specified unless importing from single file

207

Error Messages
dbimport Error Messages

dbimport could only resolve data set names from import file if importing from a
single import file

Illegal from specification

improper backup set number

Set name too long

Illegal set name

Undefined set name

Improper set number

improper or undefined data set name or number

Item name too long

Illegal item name

improper field or item name

Undefined item name

Improper item number

improper or undefined item name or number

Number of elements do not match

Index exceeds subitem count

Improper index

Improper index range

improper item element

208

Error Messages
ISAM Errors

ISAM Errors

The following values are specific to the previous Eloquence database implementa-
tion and can only happen when using eloqdb5. The Eloquence A.06.00 uses dif-
ferent values to indicate internal problems.

If you receive a database status -800, this indicates an internal failure, usually
related to the internal ISAM subsystem. In this case the last element of the status
array provides additional information.

Any value below 100 indicates an error returned by a HP-UX system call. Please
refer to /usr/include/sys/errno.h for more information, Numbers above 100 indi-
cate an ISAM related problem.

Error Number Description

100 An attempt was made to add a duplicate value to an index via
iswrite, isrewrite, isrewcurr, or isaddindex.

101 An attempt was made to perform some operation on an ISAM
file that was not previously opened using the isopen call.

102 One of the arguments of the ISAM call is not within the range
of acceptable values for that argument.

103 One or more of the elements that make up the key description is
outside of the range of acceptable values for that element.

104 The maximum number of files that may be open at one time
would be exceeded if this request were processed.

105 The format of the ISAM file has been corrupted.

106 In order to add or delete an index, the file must have been
opened with exclusive access.

107 The record or file requested by this call cannot be accessed
because it has been locked by another user.

108 An attempt was made to add an index that has been defined pre-
viously.

109 An attempt was made to delete the primary key value. The pri-
mary key may not be deleted by the isdelindex call.

110 The beginning or end of file was reached.

209

Error Messages
ISAM Errors

111 No record could be found that contained the requested value in
the specified position.

112 This call must operate on the current record. The current record
is not defined.

113 The file is exclusively locked by another user.

114 The filename is too long.

115 The lock file cannot be created.

116 Adequate memory cannot be allocated.

126 Bad record number.

127 No primary key.

131 No free disk space.

132 Record too long.

All other numbers indicate an internal error, and should be
reported to HP. Examples:

201 Bad request.

202 Too far.

203 No info.

204 Not set.

205 Bad info.

210

Error Messages
ISAM Errors

211

D

Eloquence Library

This appendix describes how you can integrate Eloquence DBMS functions with
your own programs.

You should have had previous experience with Eloquence DBMS and with the C
programming language.

212

Eloquence Library
Compilation and Linking

Compilation and Linking

Compilation

Each program in which you want to include programs from the Eloquence librar-
ies must have header-file /opt/eloquence6/include/eloqdb.h inserted at the begin-
ning.

...
#include <eloqdb.h>
...

Linking

When linking the program you must enter-l eloq to include access to the Elo-
quence DBMS library /opt/eloquence6/lib/libeloq.a.

On the Windows platform, you need the to install the eloqdb.dll and should link
with the eloqdb.lib import library.

213

Eloquence Library
ELOQLIB functions

ELOQLIB functions

Below you will find the reference specifications for the Eloqlib functions arranged
by function name in the following order:

Function Description
INIT Initialize/configure database subsystem
EXIT Terminate database subsystem
ERROR Return error description
LOGON Provide authorization information
OPEN Open database
CLOSE Terminate database access
DELETE Delete entry from data set
FIND Set up chain or index
GET Retrieve data from data set
INFO Return structural information
LOCK Lock database, data set or data item
UNLOCK Unlock database
PUT Add entry to data set
UPDATE Update entry in data set
BEGIN Begin (sub-) transaction
COMMIT Commit Transaction
ROLLBACK Rollback transaction.

214

Eloquence Library
The INIT Function

The INIT Function

The INIT function initializes and configures a database subsystem. The syntax is
as follows:

 int cc = idb_init(max_db, max_path, max_buf, max_open);

 int max_db;
 int max_path;
 int max_buf;
 int max_open;

All arguments are ignored and are only present for compatibility with the previous
implementation of the database library.

Description

The Idb_init function will initialize the database subsystem. It is called is implic-
itly when the first database is opened.

All function arguments are ignored and are only present to achieve source and
binary (in case of eloqdb.dll) compatibility with the previous implementation.
You should pass a zero value for all arguments.

Return value

Returns 0 if successful, or -1 if an error was encountered.

Example
 if(idb_init(0,0,0,0)) {
 printf(”unable to setup database subsystem”);
 exit(1);
 }

215

Eloquence Library
The EXIT Function

The EXIT Function

The EXIT function terminates a database subsystem. The syntax is as follows:

 int cc = idb_exit()

The parameters are: None

Description

The idb_exit function call will terminate access to a database subsystem. All data-
bases currently opened are closed. All resources set up by idb_init() are reset.

Return value

Returns 0 if successful, or -1 if an error was encountered.

Example
 if(idb_exit()) {
 printf(”unable to terminate database subsystem”);
 exit(1);
 }

This will terminate access to a database subsystem.

216

Eloquence Library
The ERROR Function

The ERROR Function

The ERROR function interprets the status array and returns the corresponding
error or warning message. The syntax is as follows:

 int cc = idb_error(status,buffer,length)

 int status[10];
 char buffer[80];
 int *length;

The parameters are:

status The status parameter of any failed function call (see below).

buffer A pointer to a character array of at least 80 bytes. Used to
return the message. The buffer will terminate with backslash 0
(‘\0’).

length A NULL pointer, or a pointer to an integer to return the byte
length of the message returned in buffer (except ‘\0’).

Description

The idb_error function call returns a message explaining the specified status code.
The message is returned to the buffer specified in the idb_error call.

Return value

Returns 0 if successful, or -1 if an error was encountered.

Example
 char buf[80];
 int status[10];

 ...

 if(idb_error(status, buf, NULL)) {
 printf(”unable to analyze status”);
 exit(1);
 }

The above will get a descriptive message for a failed idb function.

217

Eloquence Library
The LOGON Function

The LOGON Function

The DBLOGON is used to provide authorization information which is used when
connecting the database server.

The syntax is as follows:

 int cc = idb_logon(user, passwd)

 char *user;
 void *passwd;

The parameters are:

user A pointer to a character array which specifies the user id which
should be used to authorize database access. The user id must
be terminated with a ‘\0’ character. When a NULL pointer or an
empty user id is passed, the server will default to the user name
"default".

passwd A pointer to a character array containing the password for the
user id. The password must be terminated with a ‘\0’ character.
When a NULL pointer or an empty password is passed, the
server will assume no password.

The authorization information is transmitted to a server when a
database is opened. This has no effect when used with the
eloqdb5 server.

Description

The idb_logon function call is used to provide authorization data which are trans-
mitted to the data base server, when a data base is openend. For Eloquence
A.05.xx data bases (accessed through the eloqdb5 server), the logon information
is ignored.

Return value

Returns 0 if successful, or -1 if an error was encountered.

Example
 char *user = "mike";
 char *pswd = "secret";
 if(log_on(user, pswd)) {
 printf(”unable to save authorization information”);
 exit(1);
 }

218

Eloquence Library
The OPEN Function

The OPEN Function

The OPEN function initiates access to a database.

Status Codes
 int dbid = idb_open(base,passwd,mode,status)

 char *base;
 void *passwd;
 int mode;
 int status[10]

The parameters are:

base Specifies the database to be opened.Base is a pointer to a char-
acter array containing up to 256 characters (bytes). The data-
base name must be terminated with a ‘\0’ character.

passwd A pointer to a character array containing the password. If the
password is less than 16 characters long, it must be terminated
by a semicolon, a blank or a ‘0’ character. The password estab-
lishes the security class number which defines the data sets and
data items to which the calling program has read, update and/or
write access.

The password is only used when connecting an eloqdb5 server.
With eloqdb6, the password is ignored and authorization infor-
mation is passwd with idb_logon().

mode Specifies type of database access. See below.

status A pointer to an array of a least 10 elements used to indicate the
success or failure of the function call (see below).

IDBOPEN Modes

Mode 1: Modify shared

Data entries can be read, updated, added or deleted. This mode can be used if all
concurrent users have opened the database in either mode 1 or mode 9.

Mode 3: Modify exclusive

Data entries can be read, updated, added or deleted. This mode can be used only if
the database is not already opened by another user.

219

Eloquence Library
The OPEN Function

Mode 8: Read shared, only concurrent read allowed

Data entries can only be read. Updating, adding or deleting are not permitted by
this user or any other user. This mode can be used only if all concurrent users have
opened the database in either mode 8 or mode 9.

This mode allows you to access the database even if the database is recognized to
be inconsistent.

Mode 9: Read shared

Data entries can only be read. Updating, adding or deleting are not permitted by
this user. This mode can be used only, if all concurrent users have opened the
database in mode 1, mode 8 or mode 9.

Description

idb_open initiates access to a database, establishes the security class number of
the calling program, and establishes the type of access for all subsequent opera-
tions on the database.

Thepassword parameter is not checked if user is the superuser (root).

Return value

Returns 0 if successful, or error number if an error was encounterd.

Status codes

If idb-open was successfully executed, the status array will contain the following
values:

Table 13 Status codes

Element Meaning

0 S_OK

1 user class

2 0

3 0

4 0

5 DB_OPEN | (open_mode << 12)

6 0

220

Eloquence Library
The OPEN Function

Example
 if((dbid = idb_open(”SAD”,”MANAGER”,1,status)) %< 0) {
 printf(”unable to open SAD database\\n”);
 exit(1);
 }

This will open database SAD.

7 0

8 mode

9 database id

Table 13 Status codes

Element Meaning

221

Eloquence Library
The CLOSE Function

The CLOSE Function

The CLOSE funtion terminates access to a database or resets the current record
for a data set. The syntax is as follows:

 int cc = idb_close(base,dset,mode,status)

 int base;
 void *dset;
 int mode;
 int status[10];

The parameters are:

base Identifies the database. This must be the return value from the
idb_open call.

dset This parameter is ignored if mode is not equal to 3. Identifies
the data set to be rewound. Dset is one of the following:

• a pointer to an integer variable that specifies the data set number;

• a pointer to a character array containing up to 16 characters (bytes)
that specifies the data set name. The data set name must be termi-
nated with a semicolon, a blank or \0 character if it is less than 16
characters.

mode See below.

status A pointer to an array of a least 10 elements used to indicate the
success or failure of the function call.

IDBCLOSE Modes

Mode 1. Close database

Terminate access to the database and deallocate resources.

Mode 3. Rewind data set

The current record of the given data set is reset to zero.

Description

Idb_close terminates access to a database or resets current record for a data set. If
a program has issued multiple calls to idb_open for the same database, only the
access path of the given base parameter is affected.

222

Eloquence Library
The CLOSE Function

Idb_close does the following:

• If idb_close is called with mode 1, access to all data sets in the specified database is
terminated. Resources allocated for the database are deallocated.

• If idb_close is called with mode 3, the current record for the given data set is reset to
zero.

Return value

Returns 0 if successful, or an error number if an error was encountered.

Status codes

If idb_close was successfully executed, the status array will contain the following
values:

Example
 if(idb_close(dbid,”CUSTOMER”,3,status))
 error_handler();

This will rewind CUSTOMER data set.

Table 14 Status codes

Element Meaning

0 S_OK

1 0

2 0

3 0

4 0

5 DB_CLOSE | (open_mode << 12)

6 0

7 0

8 mode

9 0

223

Eloquence Library
The DELETE Function

The DELETE Function

The DELETE function deletes an entry from the database. The syntax is as fol-
lows:

 idb_delete(base,dset,mode,status)

 int base;
 void *dset;
 int mode;
 int status[10]

The parameters are:

base Identifies the database. This must be the return value from the
idb_open call.

dset Identifies the data set in which the entries are to be located.
Dset is one of the following:

• a pointer to an integer variable that specifies the data set number;

• a pointer to a character array containing up to 16 characters (bytes)
that specifies the data set name. The data set name must be termi-
nated with a semicolon, a blank or 0 character if it is less than 16
characters.

mode Must be 1.

status A pointer to an array of a least 10 elements used to indicate the
success or failure of the function call (see below).

Description

Idb_delete deletes the current record from the specified data set. The database
must be open in either mode 1 or mode 3. The security class number must have
write access to the data set specified in dset.

If the entry being deleted is part of a chain, all links are automatically maintained.
If the entry is the last entry in a chain and the chain is linked to an automatic mas-
ter, the entry in the automatic master is deleted unless it is linked to any other
chains. An entry in a manual master can only be deleted if all linked child entries
are deleted first.

Idb_delete does not affect the current chain or the chain information in the status
parameter.

224

Eloquence Library
The DELETE Function

Return value

Returns 0 if successful, or error number if an error was encountered.

Status codes

If idb_delete was successfully executed, the status array will contain the following
values:

 [0] = S_OK [6] = 0
 [1] = record length [7] = backward address
 [2] = 0 [8] = 0
 [3] = record number [9] = forward address
 [4] = 0
 [5] = 0 if a detail set, 1 if master set

Example
 if(idb_delete(dbid,”CUSTOMER”,1,status))
 error_handler();

This will delete the current record from the CUSTOMER data set.

225

Eloquence Library
The FIND Function

The FIND Function

The FIND function establishes the current chain or index in preparation for
access. The syntax is as follows:

 idb_find(base,dset,mode,status,item,arg)

 int base;
 void *dset;
 int mode;
 int status[10]
 void *item;
 void *arg;

The parameters are:

base Identifies the database. This must be the return value from the
idb_open call.

dset Identifies the data set in which the entries are to be located.
Dset is one of the following:

• a pointer to an integer variable that specifies the data set number;

• a pointer to an character array containing up to 16 characters (bytes)
that specifies the data set name. The data set name must be termi-
nated with a semicolon, a blank or 0 character if it is less than 16
characters.

mode One of the access modes. See below.

status A pointer to an array of a least 10 elements used to indicate the
success or failure of the function call.

item If the mode is 1,item identifies the search item to be used. It
can be one of the following:

• a pointer to an integer variable that specifies the search item num-
ber;

• a pointer to a character array containing up to 16 characters (bytes)
that specifies the search item name. The search item name must be
terminated with a semicolon, a blank or 0 character if it is less than
16 characters.

If the mode is 2 or 3,item identifies the index to be used. It can
be one of the following:

• a pointer to an integer variable that specifies the index item number;

226

Eloquence Library
The FIND Function

• a pointer to a character array containing up to 16 characters (bytes)
that specifies the index item name. The index item name must be
terminated with a semicolon, a blank or 0 character if it is less than
16 characters.

If the mode is 4 or 5,item identifies the index to be used. It can
be one of the following:

• a pointer to an integer variable that specifies the index item number;

• a pointer to a character array containing up to 16 characters (bytes)
that specifies the index item name. The index item name must be
terminated with a semicolon, a blank or 0 character if it is less than
16 characters.

arg If the mode is 1 anditem specifies a search item,arg contains a
pointer to search for the item value to be used to identify the
chain.

If mode is 1 anditem specifies an index, or the mode is 2 or 3,
arg contains a pointer to index lookup value.

If mode is 4 or 5,arg contains a pointer to a regular expression.
This is set up in the same way as index lookup values (Modes
2, 3).

Example:

 struct {
 int len; /*number of bytes in value area */
 char value[...]; /*the actual key value */
 } arg;

IDBFIND Modes

Mode 1: Find chain head/match subset

Idb_find will locate chain head or match subset depending on theitem parameter.
The item parameter may be either a search item or an index item.

If the item parameter specifies a search item:

Thearg parameter is a pointer to search for the item value to be used to identify
the chain. The length and type of the buffer specified by thearg parameter must
match the specified item.

If the item parameter specifies an index item:

227

Eloquence Library
The FIND Function

Thearg parameter is a pointer to the index value to be used to identify the subset.
The type of buffer specified by thearg parameter must match the specified index
in the given length.

NOTE: For performance considerations, accessing indexes using mode 1 is not recommended. In
order to return first/last record pointer and number of records, all matching records are read.

Mode 2: Find first entry

Locates the first matching entry in a given index.

Theitem parameter specifies which index to use. Thearg parameter is a pointer to
the index value to be used to identify the subset. The type of buffer specified by
thearg parameter must match the specified index in given length.

Mode 3: Find last entry

Locates the last matching entry in given index.

Theitem parameter specifies which index to use. Thearg parameter is a pointer to
the index value to be used to identify the subset. The type of buffer specified by
thearg parameter must match the specified index in given length.

Mode 4: Find first entry with matching regular expression

Locates the first entry matching the regular expression in index order.

The index parameter must refer to an index item. The index item must contain at
least one leading string segment.

Thearg parameter is a pointer to the regular expression to be used to identify the
subset.

The given regular expression must exactly describe the leading string segments.
There is no implicit ‘*’ at the end (as DBFIND Modes 2/3). If you store “AAA ”
(trailing space) in an entry, you won’t find it using a search value of “AAA”, but
you will find it using “AAA?” or “AAA*”.

The entries will be retrieved using DBGET Modes 5/6 in index order.

Mode 5: Find last entry with matching regular expression

Locates the last entry matching the regular expression in index order.

DBFND Mode 5 operates in the same way as Mode 4, except that it locates the
last entry.

228

Eloquence Library
The FIND Function

NOTE: Access time depends on the regular expression given. We do not recommend specifying a
character class or a wildcard character at the beginning of the regular expression because
this would result in a serial access to the dataset specified.

NOTE: Status may return a 0 in the first status array element although there is no matching entry
in the dataset specified. A subsequent DBGET will return 15 (end-of-chain) in the first
status array element.

Description

idb_find is used with detail data sets to establish a current chain for the specified
data set. This is done in preparation for using idb_get with mode 5 or 6, which
retrieve entries that belong to the current chain. The current chain is determined
by the search item specified in theitem parameter. Each current chain is associated
with a specific data set in the database and is also associated with the relationship
defined by the base parameter.

idb_find tries to locate the corresponding entry in the parent set (identified by
search item). There may not actually be any entries in the specified data set with a
matching search item value. In this case, the idb_find call will execute success-
fully, but the subsequent idb_get call will return an “end-of-chain” status code.

idb_find is used with indexed access to locate the first or last entry with a match-
ing index value. This is done in preparation for using idb_get with modes 5,6,15
or 16, which retrieve entries in index order. The current index is determined by the
index item specified in theitem parameter.

idb_find verifies that theitem parameter references an index item for the specified
data set. It then locates the argument value in the appropriate index. If the argu-
ment paramater has a length value of zero, this is simply the first or last record (in
index order). If a matching value cannot be found, the record pointer will be
located at the position in the index where the requested value would be inserted.

If the index item segment is of type character (’X’) you can just use a part of it in
the index access. However if the index item segment is a numeric one, you have to
specify the whole segment or it will be ignored (what’s the first byte of 123.456E-
2 ?).

Beware of alignment trap. For example: if you specify a construction like the fol-
lowing:

 {
 char x[2];
 long d;
 }

229

Eloquence Library
The FIND Function

there will be a 2 byte gap between the character array and the long value (longs
must be 4 byte aligned). Idb_find will assume that there is no gap between data.

For idb_find to execute successfully, the security class must have at least read
access to the data set specified by dset and to the search item specified by item. It
is not necessary to have read access to the parent of that data set. Idb_find does
not retrieve any data.

Return value

Returns 0 if successful, or error code if an error was encountered.

Status codes

If idb-find was successfully executed, the status array will contain the following
values:

Example
 int itemno;
 int product_no;

 itemno = 5; /* PRODUCT-NO item */
 product_no = 4711; /* product number */

 if(idb_find(dbid,”ORDER”,1,status,&itemno, &product_no))
 error_handler();

This will find the chain head for PRODUCT-NO in ORDER data set.

Table 15 Status codes

Element Meaning

0 S_OK

1 0

2 0

3 0

4 0

5 number of entries (mode 1 only)

6 0

7 backward address (mode 1)

8 0

9 forward address (mode 1)

230

Eloquence Library
The FIND Function

The following example assumes that an index has been defined for the data set
“SAMPLE-SET”, consisting of the following items:

 ITEM:
 CODE, X2;
 GROUP, I;

 IITEM:
 SAMPLE-INDEX = CODE,GROUP;

Now let’s try to locate all entries with a code starting with ‘A’ in ascending order.

 struct {
 int len;
 char code[2];
 } sample_key;

 sample_key.len = 1;
 sample_key.code[0] = ’A’;

 if(idb_find(dbid,”SAMPLE-SET”,2,status,”SAMPLE-INDEX”,
&sample_key))
 {
 if(status[0] == S_NOREC) {
 printf(”No entry with selected type code”);
 ...
 }
 else error_handler();
 }

 while(idb_get(dbid, “SAMPLE-SET, 5, status, “@”, buffer, 0) ==
S_OK) {
 /* ... got the next entry ... */
 }
 if(status[0] != S_ENDCHAIN)
 error_handler();

231

Eloquence Library
The GET Function

The GET Function

The GET funtion retrieves an entry from a data set. The syntax is as follows:

 idb_get(base,dset,mode,status,list,buffer,arg)

 int base;
 void *dset;
 int mode;
 void status[10]
 void *list;
 char *buffer;
 void *arg;

The parameters are:

base Identifies the database. This must be the return value from the
idb_open call.

dset Identifies the data set in which the entries are to be located.
Dset is one of the following:

• a pointer to an integer variable that specifies the data set number;

• a pointer to a character array containing up to 16 characters (bytes)
that specifies the data set name. The data set name must be termi-
nated with a semicolon, a blank or ‘\0’ character if it is less than 16
characters.

mode See access modes below.

status A pointer to an array of a least 10 elements used to indicate the
success or failure of the function call (see below).

list Usually specifies the data items for which values are to be
retrieved and stored in the buffer parameter. With idb_get, only
@ is supported, i.e. a value for every data item in the entry will
be returned (in the order defined in the data set).List must be a
pointer to a character array.

buffer A pointer to a character array used to return the values of the
items specified in the list parameter. The values are returned in
the order specified in the list.

arg Ignored, except in mode 4 and mode 7. If the mode is 4,arg
contains a pointer to the record number of the record to be
retrieved.

If the mode is 7,arg is a pointer to the value of the key item

232

Eloquence Library
The GET Function

selected for calculated access.

IDBGET Modes

Mode 1: Reread

idb_get retrieves the current record.

Mode 2: Serial read, forward

idb_get serially retrieves the record after the current record. The retrieved record
becomes the current record.

Mode 3: Serial read, backward

idb_get serially retrieves the record before the current record. The retrieved record
becomes the current record.

Mode 4: Directed read

idb_get retrieves the entry with the record number specified in thearg parameter.

Mode 5: Chained read, forward

idb_get serially retrieves the next entry in the current chain. Successive calls to
idb_get can be executed to retrieve all the entries in the chain. A previous call to
idb_find can be used to establish the current chain.

Indexed read, forward

idb_get retrieves the first or next entry in the index order. idb_find on index item
is used to define current index. idb_get will fail with end-of-chain condition if no
more entries with search value as specified by idb_find can be found.

Mode 6: Chained read, backward

idb_get serially retrieves the previous entry in the current chain.

Indexed read, backward

idb_get retrieves the last/previous entry in index order. idb_find on index item is
used to define current index. idb_get will fail with end-of-chain condition if no
more entries with search value as specified by idb_find can be found.

Mode 7: Calculated read

idb_get retrieves the entry with the key item value specified in thearg parameter.
This mode is only allowed on manual or automatic data sets.

233

Eloquence Library
The GET Function

Mode 15: Indexed read forward, ignore “end-of-chain” condition

idb_get reads the first or next entry in current index order. idb_find on index item
is used to establish current index. An “end-of-chain” condition will be ignored.
idb_get will just retrieve the next entry (in index order) without displaying a mes-
sage until end-of-file condition.

Mode 16: Indexed read backward, ignore “end-of-chain” condition

idb_get reads the last or previous entry in current index order. idb_find on index
item is used to establish current index. An “end-of-chain” condition will be
ignored. idb_get will just retrieve previous entry (in index order) without display-
ing a message until end-of-file condition.

Description

Idb_get retrieves an entry using the access methods specified by the mode param-
eter. Depending on thelist parameter, all or part of the entry may be returned. The
values of the data items are placed in the buffer in the same order as they appear in
the list parameter. The data returned in the buffer is byte-aligned.

For idb_get to execute successfully, the security class must be in the read class list
of the data set specified bydset and in the read class list of the requested items.

The record retrieved by idb_get is the current record for this data set. A data set
does not have a current record in the following cases:

• The data set has not yet been accessed by idb_get;

• The data set was rewound using idb_close mode 3.

To obtain a record number for a directed read (mode 4), call idb_get in another
mode and save the record number returned in the status array. The record number
can be used for a subsequent directed read. Because each idb function reinitializes
the status array, you must copy the record number from the status array into a vari-
able, and then pass the record number back to the idb_get mode 4 later.

NOTE: Entries are not added sequentially, so the record number incremented by 1 is not necessarily
the record number of the next entry.

Return value

Returns 0 if successful, or error code if an error was encountered.

Status codes

234

Eloquence Library
The GET Function

If idb-get was successfully executed, the status array will contain the following
values:

Example
 if(idb_get(dbid,”ORDER”,5,status, “@”, NULL))
 error_handler();

This will retrieve the next entry from current chain in the ORDER data set.

Table 16 Status codes

Element Meaning

0 S_OK

1 record length

2 0

3 record number

4 0

5 0 if detail set, 1 if master set

6 0

7 backward address (0 if retrieving in index order)

8 0

9 forward address (0 if retrieving in index order)

235

Eloquence Library
The INFO Function

The INFO Function

The INFO funtion provides structural information about the database currently
being accessed. The syntax is as follows:

 idb_info(base,qual,mode,status,buffer)

 int base;
 void *qual;
 int mode;
 int status[10];
 void *buffer;

The parameters are:

base Identifies the database. This must be the return value from the
idb_open call.

dset Identifies a data set or data item, depending on the mode used.
Refer to description below for information on qualifier and
mode. Refer to the idb_find parametersdset anditem for infor-
mation on specifying the data set or data item.

mode The available modes and information returned by each are
explained below.

status A pointer to an array of a least 10 elements used to indicate the
success or failure of the function call.

buffer A pointer to a character array containing the values of all data
items in the data set.

Description

The idb_info function allows you to programmatically retrieve database structure
and access information about data items and data sets. Access to structural infor-
mation is restricted by the security class number specified when the database is
opened. Any data sets which are inaccessible to the specified security class are
considered nonexistent. For example, if your password is paired with security
class number 20, idb_info will not show any data sets to which security class 20
has no access.

Idb_info can be used to make application programs independent of the database
structure. If this procedure is used to retrieve all structural information, including
item and set numbers, new data items and data sets can be added to the database
without affecting existing programs.

236

Eloquence Library
The INFO Function

IDBINFO Modes

Mode 101: Item number

Mode 101 identifies the data item number.

Qualifier Identifies the data item for which the information is requested.

Buffer Contains the following:

 struct m101 {
 int item_number;
 }

Mode 102: Item name, type and length

Mode 102 describes a specific data item, including its name, data type and length.

Qualifier Identifies the data item for which the information is requested.

Buffer Contains the following:

 struct m102 {
 char item_name[16];
 char item_type;
 char blanks[3];
 int subitem_length;
 int subitem_count;
 }

Mode 103: Items in database

Mode 103 identifies all data items defined in the database.

Qualifier Ignored

Buffer Contains the following:

 struct m103 {
 int item_count;
 int item_numbers[];
 }

The data items are listed in the order in which they are defined in the item part of
the schema.

Mode 104: Fields in data set entry

Mode 104 identifies all data items in an entry of a specific data set.

Qualifier Identifies the data set for which the information is requested.

Buffer Contains the following:

 struct m104 {
 int field_count;

237

Eloquence Library
The INFO Function

 int item_numbers[];
 }

A field is the occurrence of an item within an entry. The fields
are listed in the order in which they are defined for the set entry
in the schema.

Mode 201: Set number and access

Mode 201 identifies the data set number and the type of access allowed.

Qualifier Identifies the data set for which the information is requested.

Buffer Contains the following:

 typedef struct m201 {
 int set_number;
 }

The data set number is positive if the security class has only read access to the
data set. The number is negative if the security class has both read and write
access.

Mode 202: Set name, type and length

Mode 202 describes a specific data set, including its name, data set type and
capacity.

Qualifier Identifies the data item for which the information is requested.

Buffer Contains the following:

 typedef struct m202 {
 char set_name[16];
 char set_type;
 char blanks[3];
 int entry_length;
 char blanks2[4];
 int entry_count;
 int capacity;
 }

Entry count is the number of records used in the data set.
Capacity is the maximum capacity as defined in the schema
text file and the maximum entry count.

Mode -202: Set name, type and length (local)

Mode -202 describes a specific data set, including its name, data set type and
capacity. This is the same as mode 202. The difference is that this is performed
locally (without contacting the database server). The entry_cnt element of the
return structure is always zero.

238

Eloquence Library
The INFO Function

Mode 203: Sets in database

Mode 203 identifies all data sets defined in the database and the type of access
allowed.

Qualifier Ignored

Buffer Contains the following

 struct m203 {
 int set_count;
 int set_numbers[];
 }

The data set number is positive if the security class has only
read access to the data item. The number is negative if the secu-
rity class has both read and write access.

Mode 204: Sets with item

Mode 204 identifies all accessible data sets which contain a specified data item,
and indicates the type of access allowed.

Qualifier Identifies the data item for which the information is requested.

Buffer Contains the following:

 typedef struct m204 {
 int set_count;
 int set_numbers[];
 }

The data set number is positive if the security class has only read access to the
data item. The number is negative if the security class has both read and write
access.

Mode 301: Paths and Indexes

Mode 301 identifies the search item and sort items defined for or related to the
specified data set.

Qualifier Identifies the data set for which the information is requested.

Buffer Contains the following:

 struct m301 {
 int search_item_count;
 struct {
 int set_number;
 int search_item_number;
 int reserved;
 } path_list[];
 }

239

Eloquence Library
The INFO Function

If the qualifier specifies a master data set, the returned set numbers identify the
linked detail sets. The corresponding search item number identifies the search
item in the linked detail set. If the master has no detail sets, the search item count
is zero.

If the qualifier specifies a detail data set, the returned set numbers identify the
linked master sets. The corresponding search item number identifies the item in
the detail data set. If the detail set has no master sets, the search item count is zero.

Mode 302: Primary search item

Mode 302 identifies the primary search item for a specified data set.

Qualifier Identifies the detail or master data set for which the information
is requested.

Buffer Contains the following:

 struct m302 {
 int item_number;
 int parent_set_number;
 }

If the qualifier is a detail data set, the item number is the pri-
mary search item number, and the set number is the related
master data set number.

If the qualifier is a master data set, the item number is the key
item number, and the set number is zero. If you do not have
access to the key item, the item number is zero.

Mode 501: Index item number

Mode 501 identifies the index item number.

Qualifier Identifies the index item for which the information is requested.

Buffer Contains the following:

 struct m501 {
 int index_item_number;
 }

Mode 502: Index item name and segments

Mode 502 describes a specific index item, including its name and segments.

Qualifier Identifies the index item for which the information is requested.

240

Eloquence Library
The INFO Function

Buffer Contains the following:

 struct m502 {
 char iitem_name[16];
 int iitem_seg_cnt;
 struct {
 int item_number;
 int item_length;
 } seg[8];
 }

Mode 503: Index items in database

Mode 503 identifies all index items defined in the database.

Qualifier Ignored

Buffer Contains the following:

 struct m503 {
 int iitem_count;
 int iitem_numbers[];
 }

The index items are listed in the order in which they are defined in the index item
part of the schema.

Mode 504: Index items in data set entry

Mode 504 identifies all index items in an entry of a specific data set.

Qualifier Identifies the data set for which the information is requested.

Buffer Contains the following:

 struct m504 {
 int iitem_count;
 int iitem_numbers[];
 }

The index items are listed in the order in which they are defined for the set index
in the schema.

Return value

Returns 0 if successful, or error number if an error was encountered.

Status codes

If idb-info was successfully executed, the status array will contain the following
values:

241

Eloquence Library
The INFO Function

Example
 union info info;

 if(idb_info(dbid,”ORDER”,202,status,&info))
 error_handler();

 printf(”Set name: %16.16s\\n”, info.info_202.name);
 printf(”Set type: %c\\n”, info.info_202.type);
 ...

This will describe the ORDER data set.

Table 17 Status codes

Element Meaning

0 S_OK

1 number of bytes transferred into buffer

2 0

3 unchanged

4 0

5 DB_INFO | (open_mode <<12)

6 0

7 0

8 mode

9 0

242

Eloquence Library
The LOCK Function

The LOCK Function

The LOCK function locks a database, a data set or an item. The syntax is as fol-
lows:

 idb_lock(base,qual,mode,status)

 int base;
 void *qual;
 int mode;
 int status[10];

The parameters are:

base Identifies the database. This must be the return value from the
idb_open call

qual Identifies a data set, data item or lock qualifier, depending on
the mode used. Refer to the description below for information
on qualifier and Mode. Refer to the idb_find parametersdset
anditem for information on specifying the data set or data item.

mode The modes available listed below.

status A pointer to an array of at least 10 elements used to indicate the
success or failure of the function call (see below).

Description

The idb_lock function locks the whole database, a data set or data items depend-
ing on mode.

Table 18 idb_lock modes

Mode Target Wait Description

1 database Write Wait Lock database for writing

2 database Write

3 data set Write Wait Lock data set for writing

4 data set Write

5 predicate Write Wait Lock using for writing

6 predicate Write using predicate spec

243

Eloquence Library
The LOCK Function

A read lock allows concurrent read locks. Awrite lock does not allow any concur-
rent lock (it is a lock for WRITE).

A wait lock will block execution until lock is available. A lock withoutwait will
return status error if lock is not available.

A lock with wait will fail and return status error if another lock has already been
granted and the requested lock is not available.

The Lock Descriptor Format (next page) will explain how to set up predicate
specification. Using predicate specification it is possible to lock database, data
set(s) or (a group of) data item(s) to be locked.

Return value

Returns 0 if successful, otherwise gives error code.

Status codes

If idb-lock was successfully executed, the status array will contain the following
values:

11 database Read Wait Lock database for reading

12 database Read

13 data set Read Wait Lock data set for reading

14 data set Read

15 predicate Read Wait Lock for reading

16 predicate Read using predicate spec

Table 19 Status codes

Element Meaning

0 S_OK

1 1

2 0

3 1

Table 18 idb_lock modes

Mode Target Wait Description

244

Eloquence Library
The LOCK Function

Example
 if(idb_lock(dbid,”ORDER”,4,status))
 error_handler();

This will lock ORDER data set.

4 0

5 DB_LOCK | (open_mode << 12)

6 0

7 0

8 mode

9 0

Table 19 Status codes

Element Meaning

245

Eloquence Library
LOCK DESCRIPTOR FORMAT

LOCK DESCRIPTOR FORMAT

 A packed block of lock descriptors.
 See programming manuals for details.

 Set Item Op Parameters
 --- ---- -- --
 @ @ set_cnt = 0
 x @ set_cnt = 1, setno, item = 0
 @ x x set_cnt, set_list, item, op, vtype, value
 x x x set_cnt = 1, setno, item, op, vtype, value

 lock descriptor buffer :

 +-----------------+ Total size of buffer EXCLUDING this
 | total_size | in byte units (int)
 +-----------------+
 | descriptor #1 |
 +-----------------+
 | ... |
 +-----------------+

 lock descriptor :

 +-----------------+ Size of descriptor INCLUDING this
 | length | in byte units (int)
 +-----------------+
 | set | Set name (16 bytes) or number (int)
 +-----------------+
 | item | Item name (16 bytes) or number (int)
 +-----------------+
 | op | OP (2 bytes)
 +-----------------+
 | value | VALUE as defined in ROOT file
 +-----------------+ padded to next 4 byte boundary

246

Eloquence Library
The UNLOCK Function

The UNLOCK Function

The UNLOCK function unlocks a database. The syntax is as follows:

 int cc = idb_unlock(base,qual,mode,status)

 int base;
 void *qual;
 int mode;
 int status[10];

The parameters are:

base Identifies the database. This must be the return value from the
idb_open call

qual This parameter is ignored.

mode The modes available listed below.

status A pointer to an array of a least 10 elements used to indicate the
success or failure of the function call (see below).

Description:

Idb_unlock is used to release data base locks. If a program has issued multiple
calls to idb_open for the same database, only the access path of the given base
parameter is affected.

In addition to the "official" modes above, idb_unlock also accepts and translates
the following mode values:

Mode 2/11/12 is mapped to 1
Mode 4/13/14 is mapped to 3

Table 20 idb_unlock modes

Mode Target Description

1 database Unlock database. All locks for the database
are released.

3 data set Unlock data set. A lock mode 3/4/13/14 for
the specified data set is released.

5 predicate Unlock predicate. A lock mode 5/6/15/16 is
released.. The qualifier must match the
idb_lock qualifier argument.

247

Eloquence Library
The UNLOCK Function

Mode 6/15/16 is mapped to 5

This makes it possible to use the same idb_lock and idb_unlock modes.

Return value

Returns 0 if successful, otherwise error code.

Status codes

If idb_unlock was successfully executed, the status array will contain the follow-
ing values:

Example
 if(idb_unlock(dbid,””,1,status))
 error_handler();

This will release all locks for given database.

Table 21 Status codes

Element Meaning

0 S_OK

1 unchanged

2 unchanged

3 unchanged

4 0

5 DB_UNLOCK | (open_mode << 12)

6 0

7 0

8 mode

9 0

248

Eloquence Library
The PUT Function

The PUT Function

The PUT function adds an entry to the database. The syntax is as follows:

 idb_put(base,dset,mode,status,list,buf)

 int base;
 void *dset;
 int mode;
 int status[10]
 void *list;
 void *buffer;

The parameters are:

base Identifies the database. This must be the return value from the
idb_open call

dset Identifies the data set in which the entries are to be located.
Dset is one of the following:

• a pointer to an integer variable that specifies the data set number

• a pointer to a character array containing up to 16 characters (bytes)
that specifies the data set name. The data set name must be termi-
nated with a semicolon, a blank or \0 character if it is less than 16
characters.

mode Mode must be 1

status A pointer to an array of a least 10 elements used to indicate the
success or failure of the function call (see below).

list Usually specifies the data items for which values are to be
retrieved from the buffer parameter and stored in the dataset. @
is the only character supported aslist parameter, i.e. a value for
every data item in the entry will be stored (in the order defined
in the data set).list must be a pointer to a character array.

buffer A pointer to a character array containing the values of all data
items in the data set.

Description

Idb_put adds an entry to the specified data set. The database must be open in
either mode 1 or mode 3. The security class number must have write access to the
data set specified in dset.

249

Eloquence Library
The PUT Function

If the entry being written is part of a chain, then all links are automatically main-
tained. If the entry is the first entry in a chain and the chain is linked to an auto-
matic master, the entry in the automatic master is added if it is not already linked
to any other chains.

If index items are defined for the specified data sets, the index entries are automat-
ically maintained.

An entry in a manual master may not have a duplicate search item value.

Return value

Returns 0 if successful, otherwise error code.

Status codes

If idb-put was successfully executed, the status array will contain the following
values:

Example
 if(idb_put(dbid,”CUSTOMER”,1,status,”@”,buf))
 error_handler();

This will add a record to CUSTOMER data set.

Table 22 Status codes

Element Meaning

0 S_OK

1 record length

2 0

3 record number

4 0

5 0 if detail set, 1 if master set

6 0

7 backward address

8 0

9 forward address

250

Eloquence Library
The UPDATE Function

The UPDATE Function

The UPDATE function updates an entry in the database. The syntax is as follows:

 idb_update(base,dset,mode,status,list,buf)

 int base;
 void *dset;
 int mode;
 int status[10]
 void *list;
 void *buffer;

The parameters are:

base Identifies the database. This must be the return value from the
idb_open call

dset Identifies the data set in which the entries are to be located.
Dset is one of the following:

• a pointer to an integer variable that specifies the data set number

• a pointer to an character array containing up to 16 characters (bytes)
that specifies the data set name. The data set name must be termi-
nated with a semicolon, a blank or \0 character if it is less than 16
characters.

mode Mode must be 1

status A pointer to an array of a least 10 elements used to indicate the
success or failure of the function call (see below).

list Usually specifies the data items for which values are to be
retrieved from the buffer parameter and stored in the dataset. @
is the only character supported aslist parameter, i.e. a value for
every data item in the entry will be returned (in the order
defined in the data set).list must be a pointer to a character
array.

buffer A pointer to a character array containing new values for all data
items in the data set.

Description

Idb_update updates current entry of the specified data set. The database must be
open in either mode 1 or mode 3. The security class number must have write
access to the data set specified in dset.

251

Eloquence Library
The UPDATE Function

Search item values may not be changed.

If index items are defined for the specified data sets, the index entries are automat-
ically maintained.

Return value

Returns 0 if successful, otherwise error code.

Status codes

If idb-update was successfully executed, the status array will contain the follow-
ing values:

Example
 if(idb_update(dbid,”CUSTOMER”,1,status,”@”,buf))
 error_handler();

This will update current record in the CUSTOMER data set.

Table 23 Status codes

Element Meaning

0 S_OK

1 record length

2 0

3 record number

4 0

5 0 if detail set, 1 if master set

6 0

7 backward address

8 0

9 forward address

252

Eloquence Library
The BEGIN Function

The BEGIN Function

The BEGIN function begins a new (sub-) transaction . The syntax is as follows:

 idb_begin(comment,mode,status)

 char *comment;
 int mode;
 int status[10]

The parameters are:

comment A pointer to a character array providing a comment for the
transaction. It must be terminated with a 0 character. This com-
ment is stored by the database server in the transaction log.
When a NULL pointer is passed or the comment is empty the
value is ignored.

mode Must be 1.

status A pointer to an array of a least 10 elements used to indicate the
success or failure of the function call (see below).

Description

The idb_begin function begins a new (sub-) transaction. When this is the first
transaction, it is called top level transaction. No modifications are permanently
saved in the Eloquence A.06.00 data base until the top level transaction is com-
mitted. A subsequent idb_begin function call begins a new subtransaction, which
can be controlled separately with idb_commit and idb_rollback functions.

Each transaction gets a transaction identifier assigned, which is unique during the
database session. This is returned in the status. If a comment is passed to
idb_begin, the string is written to the database transaction log..

Return value

Returns 0 if successful, or error number if an error was encountered.

Status codes

If idb_begin was successfully executed, the status array will contain the following
values:

253

Eloquence Library
The BEGIN Function

Example
 if(idb_begin(NULL,1,status))
 error_handler();

This will begin a new transaction.

Table 24 Status codes

Element Meaning

0 S_OK

1 Transaction ID

2 Transaction nesting level

3 0

4 0

5 0

6 0

7 0

8 0

9 0

254

Eloquence Library
The COMMIT Function

The COMMIT Function

The COMMIT function commits (sub-) transaction . The syntax is as follows:

 idb_commit(mode,status)

 int mode;
 int status[10]

The parameters are:

mode Must be 1 or 2, see below.

status A pointer to an array of a least 10 elements used to indicate the
success or failure of the function call (see below).

IDBCOMMIT Modes

Mode 1: Commit current (sub-)transaction

idb_commit commits the current transaction. If this is the toplevel transaction,
modifications are made permanent to the database. A commit on a subtransaction
does only cause all modifications to become part of the parent transaction.

Mode 2: Commit top level transaction

idb_commit can be directed to commit the toplevel transaction and any currently
active subtransaction.

Description

Database modifications made in a transaction are not saved in the database until
the enclosing is commited. When the commit function succeeds it is guaranteed
that all modifications succeeded. In case the commit fails the database it not mod-
ified at all.

As you probably have noticed, idb_commit does not take a database argument.
Transactions are global for all databases even if they are executed on different
servers.

Return value

Returns 0 if successful, or error number if an error was encountered.

Status codes

255

Eloquence Library
The COMMIT Function

If idb_commit was successfully executed, the status array will contain the follow-
ing values:

Example
 if(idb_begin(NULL, 1,status))
 error_handler();
 ...
 if(idb_commit(1,status))
 error_handler();

This will commit any modifications made in the transaction and finish the transac-
tion.

Table 25 Status codes

Element Meaning

0 S_OK

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

256

Eloquence Library
The ROLLBACK Function

The ROLLBACK Function

The ROLLBACK function undoes any pending (sub-) transaction . The syntax is
as follows:

 idb_rollback(id,mode,status)

 int id;
 int mode;
 int status[10]

The parameters are:

id Transaction id, used with mode 2.

mode See below.

status A pointer to an array of a least 10 elements used to indicate the
success or failure of the function call (see below).

IDBROLLBACK Modes

Mode 1: Rollback current (sub-)transaction

The idb_rollback function is used to undo a pending transaction. If this is a top
level transaction, all pending database modifications are reverted. If applied to a
subtransaction all modifications including the enclosing idb_begin are reverted.

Mode 2: Rollback specified transaction

idb_rollback can be directed to rollback all transaction until the specified one. The
transaction id is returned by the idb_begin function.

Mode 3: Rolback top level transaction

idb_rollback can be directed to rollback the toplevel transaction and any currently
active subtransaction.

Description

Database modifications made in a transaction are not saved in the database until
the enclosing is commited. The idb_rollback reverts any pending modification.

As you probably have noticed, idb_rollback does not take a database argument.
Transactions are global for all databases even if they are executed on different
servers.

257

Eloquence Library
The ROLLBACK Function

Return value

Returns 0 if successful, or error number if an error was encountered.

Status codes

If idb_rollback was successfully executed, the status array will contain the follow-
ing values:

Example
 /* begin transaction */
 if(idb_begin(NULL, 1,status))
 error_handler();

 if (modify_database()) {
 /* something went wrong, revert changes */
 if(idb_rollback(0, 1,status))
 error_handler();
 return -1;
 }

 /* commit changes */
 if(idb_commit(1,status))
 error_handler();

This will rollback any modifications in case the function modify_database indi-
cates a failure. Otherwise the transaction is commited.

Table 26 Status codes

Element Meaning

0 S_OK

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

258

Eloquence Library
ERROR HANDLING

ERROR HANDLING

A nonsuccessful attempt to execute an idb function call will set the status array as
follows:

If error code is S_DAEMON or S_ISAM then secondary code will specify the
reason of failure.

Table 27 Status codes

Element Meaning

0 error code

1 unchanged

2 unchanged

3 unchanged

4 0

5 dbml id | (open_mode << 12)

6 0

7 0

8 mode

9 secondary status

259

Eloquence Library
SAMPLE PROGRAM

SAMPLE PROGRAM

/*
 sample.c

 compile: cc sample.c -o sample -l eloq
 usage : sample database password
*/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <eloqdb.h>

#define ABS(a) ((a)<0?-(a):(a))

int dbid;
int status[10];

main(argc, argv)
int argc;
char *argv[];
{
 int i;
 struct {
 int count;
 int setno[MAX_SET_CNT];
 } set_list;

 if(argc < 3) {
 fprintf(stderr, “usage: %s data_base password\\n”, argv[0]);
 exit(2);
 }

 dbid = idb_open(argv[1], argv[2], 9, status);
 errorhandler(”opening database”);

 idb_info(dbid, 0, 203, status, &set_list);
 errorhandler(”info 203”);
 for (i = 0 ; i < set_list.count; i++)
 set_info(set_list[i]);

 wrapup(0);
}

set_info(setno)
int setno;
{
 union info info;

 setno = ABS(setno);
 idb_info(dbid, &setno, 202, status, &info);
 errorhandler(”info 202”);
 printf(”%16.16s %02d %c %6d %8d %8d\\n”,
 info.set.name, setno, info.set.type, info.set.rec_len,
 info.set.capacity, info.set.entries);

260

Eloquence Library
SAMPLE PROGRAM

}

wrapup(cond)
int cond;
{
 idb_exit();
 exit(cond);
}

errorhandler(action)
char *action;
{
 char tmp[80];

 if(status[0] != S_OK)
 {
 fprintf(stderr, “Status error #%d while %s\\n”, status[0],
action);

 if(idb_error(status, tmp, NULL) == S_OK)
 fprintf(stderr, “%s\\n”, tmp);
 wrapup(1);
 }
}

261

Eloquence Library
Sample Program

Sample Program

/*
 sample.c

 This is a sample program showing usage of eloquence database
 library.

 compile: cc sample.c -o sample -l eloq
 usage : sample

 This sample will assume the existence of a database SAD
 with the following structure:

 ITEMS:
...
PRODUCT-NO, I;
PROD-DESC, X30;
...

 SETS:
...

 N: PRODUCT, M (/0);
 E: PRODUCT-NO,

PROD-DESC;
...

*/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <signal.h>

#include <eloqdb.h>

int dbid; /* data base id */
int status[10]; /* data base status */

char buf[100]; /* data abse buffer */

struct Product {
 short no;
 char desc[30];
} product;

typedef struct Packlist {
 char *item; /* item name */
 void *ptr; /* pointer to item value */
 char type; /* item type */
 int size; /* item size */
 int count; /* subitem count */
};

struct Packlist product_packfmt[] =
{
 { "PRODUCT-NO", &product.no },

262

Eloquence Library
Sample Program

 { "PROD-DESC", product.desc },
 { "" }
};

signal_handler()
{
 printf("Interrupt\n");
 wrapup(3);
}

main(argc, argv)
int argc;
char *argv[];
{
 char op;

 signal(SIGINT, signal_handler);
 signal(SIGTERM, signal_handler);

 printf("Opening database ...\n");
 dbid = idb_open("../sad/SADN", "MANAGER", 3, status);
 errorhandler("opening database");

 setup_pack_list(product_packfmt);

 do {
 printf("Add, Update, Delete, Quit ?");
 fflush(stdout);
 scanf("%1s", buf);
 op = *buf;
 gets(buf);

 switch(op) {
 case 'A':
 add_product();
 break;
 case 'U':
 update_product();
 break;
 case 'D':
 delete_product();
 break;
 case 'Q':
 break;
 default:
 printf("Illegal - reenter\n");
 }
 } while(op != 'Q');
 wrapup(0);
}

wrapup(cond)
int cond;
{
 if(dbid >= 0) {
 printf("closing database ...\n");
 idb_close(dbid, NULL, 1, status);
 errorhandler("closing database");
 }
 idb_exit();
 exit(cond);

263

Eloquence Library
Sample Program

}

errorhandler(action)
char *action;
{
 char tmp[80];

 if(status[0] != S_OK)
 {
 fprintf(stderr, "Status error #%d while %s\n", status[0], ac-
tion);
 if(idb_error(status, tmp, NULL) == S_OK)
 fprintf(stderr, "%s\n", tmp);
 wrapup(1);
 }
}

/*
 handle product
*/

get_product()
{
 printf("Product no ? ");
 fflush(stdout);
 scanf("%hd", &product.no);

 idb_get(dbid, "PRODUCT", 7, status, "@", buf, &product.no);
 if(status[0] == S_NOREC) {
 printf("Product no %d found\n", product.no);
 return(0);
 }
 errorhandler("get product");
 unpack_buffer(product_packfmt);
 return(1);
}

add_product()
{
 printf("Product no ? ");
 fflush(stdout);
 scanf("%hd", &product.no);

 printf("Description ? ");
 fflush(stdout);
 scanf("%s", product.desc);

 pack_buffer(product_packfmt);
 idb_put(dbid, "PRODUCT", 1, status, "@", buf);
 if(status[0] == S_DUPL) {
 printf("Duplicate product\n");
 return(0);
 }
 errorhandler("adding product");
 printf("Product added\n");
 return(1);
}

update_product()
{
 if(!get_product())

264

Eloquence Library
Sample Program

 return(0);
 printf("Product no : %d\n", product.no);
 printf("Description : %.30s\n", product.desc);

 printf("Description ? ");
 fflush(stdout);
 scanf("%s", product.desc);

 pack_buffer(product_packfmt);
 idb_update(dbid, "PRODUCT", 1, status, "@", buf);
 errorhandler("updating product");
 printf("Product updated\n");
 return(1);
}

delete_product()
{
 if(!get_product())
 return(0);
 printf("Product no : %d\n", product.no);
 printf("Description : %.30s\n", product.desc);

 idb_delete(dbid, "PRODUCT", 1, status);
 errorhandler("deleting product");
 printf("Product deleted\n");
 return(1);
}

/*
 buffer pack/unack utilities
*/

setup_pack_list(listp)
struct Packlist *listp;
{
 union info info;

 while(*listp->item) {
 idb_info(dbid, listp->item, 102, status, &info);
 errorhandler("info 102");
 listp->type = info.item.type;
 listp->size = info.item.size;
 listp->count = info.item.count;
 listp++;
 }
}

pack_buffer(listp)
struct Packlist *listp;
{
 int i, ofs;

 ofs = 0;
 while(*listp->item) {
 for(i = 0; i < listp->count; i++) {
 if(listp->type == 'X')
 {
 char *to = (char *)&buf[ofs];
 char *from = (char *)listp->ptr + i*listp->size;
 int len = listp->size;
 while(*from && len) {

265

Eloquence Library
Sample Program

 *to++ = *from++;
 len--;
 }
 memset(to, ' ', len);
 }
 else
 memcpy(&buf[ofs], (char *)listp->ptr + i*listp->size,
listp->size);
 ofs += listp->size;
 }
 listp++;
 }
}

unpack_buffer(listp)
struct Packlist *listp;
{
 int i, ofs;

 ofs = 0;
 while(*listp->item) {
 for(i = 0; i < listp->count; i++) {
 memcpy((char *)listp->ptr + i*listp->size, &buf[ofs], listp-
>size);
 ofs += listp->size;
 }
 listp++;
 }
}

266

Eloquence Library
Sample Program

267

E

Obsolete Database Utilities

The database utilities documented in this chapter are no longer used as of Elo-
quence revision A.06.00. The documentation has been retained so this manual is
still usable if you are using a previous Eloquence revision.

268

Obsolete Database Utilities
Introduction

Introduction

The Eloquence DBMS utilities create, initialize, and purge database files and per-
form various maintenance operations. The utilities consist of Eloquence com-
mands, programs, and statements, in addition to HP-UX programs and script files.
The database utilities are summarized below:

Table 28 Obsolete database utilities

Eloquence
Statements

 HP-UX Pro-
grams and
Script Files

 Description

dbutil Database modification tool.

DBSTORE dbstore Copies either the database or selected data sets to a
backup device. dbstore is a customizable script file.
DBSTORE calls dbstore.

DBRESTORE dbrestore Restores the database from the backup created by
DBSTORE or dbstore. dbrestore is a customizable
script file. DBRESTORE calls dbrestore.

dbexport Copies data entries from all or selected data sets to
ASCII files. Database structural information isnot
saved.

dbimport Copies data entries from ASCII files into data sets
of a database.

dbmods Allows changing various database structural infor-
mation without unloading and reloading stored
data.

DBPASS Changes the password for a stated user-class num-
ber.

DBMAINT Changes the maintenance password for a stated
database.

READ
DBPASS-
WORD

Reads all user passwords from a specified database.

269

Obsolete Database Utilities
Introduction

WRITE
DBPASS-
WORD

Writes all user passwords from a specified database.

dstatus Diagnostic tool for reporting the Eloquence system
status. Its functionalitycould be altered as new fea-
tures are developed. The parameters are:-t = list of
tasks; -d = list of opened databases; -help.

Table 28 Obsolete database utilities

Eloquence
Statements

 HP-UX Pro-
grams and
Script Files

 Description

270

Obsolete Database Utilities
DBPATCH utility

DBPATCH utility

If the database ROOT file contains different information than the data sets (e.g.
number of records), the database is considered corrupted and a status word -94 is
returned by DBOPEN. This may be the result of a power failure or a kill -9 of the
daemon in the "right" moment.

The recommended procedure to recover from a corrupted database is to reload the
database from a backup, because this will guarantee a fast and consistent recov-
ery. However, there are situations, where the only supported way to repair your
database is to export it using dbexport, erase it using dberase and re-fill it using
dbimport utility programs.

The dbpatch utility can be used for two different purposes:

• If started without any options, it indicates which datasets are corrupted.

Sample output of the dbpatch utility. The mark at the end of a line indicates a cor-
rupted dataset:

 EXPECTED REAL

 DATA SET CAPACITY RECLEN ENTRIES RECLEN ENTRIES

 ---------------- -- - -------- ------ -------- ------ --------

 INTERPRET 01 A 100 32 68 32 69 <

 NAME 02 A 100 64 50 64 50

 INHABER 03 M 200 76 161 76 161

 DISC 04 D 500 128 2429 128 2430 <

• If started with the-w option it patches the ROOT file.

THIS DOES NOT FIX ANY CORRUPTED DATA, it will simply suppress the status
error.
However, this may be necessary, if time does not permit you to export/import the data-
base.

NOTE: The use of the dbpatch utility with the write option is UNSUPPORTED and may result in
unpredictable behaviour, due to errors in the "links" between data records or data sets
(Master/Detail). You should repair a corrupted database using dbexport/dbimport as soon
as possible.

271

Obsolete Database Utilities
Database Restructuring

Database Restructuring

Certain changes to an existing structure can be made without having to transfer
data from the old database to the new one. The dbmods utility allows users to
change many structural items, as described on the following pages.

More extensive changes are possible by first unloading the database and recreat-
ing the root file. The general sequence is:

1 Run the dbexport to back up all data set entries.

2 Purge the old database using DBPURGE or dbpurge.

3 Redefine the database and use an editor to modify the schema.

4 Run the schema program to create the new root file.

5 Use DBCREATE or dbcreate to create and initialize the new data sets.

6 Run the dbimport to load data entries from the backup into the new database.

 The following are examples of changes that can be made to the database struc-
ture using the database utility programs.

Table 29 Type of Access

Database Structural Change Program To Use

Adding, changing or deleting passwords and user-class num-
bers.

dbmods

Changing data set read- and write-class lists. dbmods

Adding new data item definitions. dbexport/dbimport *

Removing data items not used as search items. dbexport/dbimport *

Rearranging the item order of a data set entry. dbexport/dbimport

Changing the length of string items. ** dbexport/dbimport

Changing a data item or data set name and all references to it. dbmods

Changing numeric type items to another numeric type. *** dbexport/dbimport

Changing numeric type items to string items and vice versa

dbexport/dbimport

272

Obsolete Database Utilities
Database Restructuring

* If a data item is added or deleted within a data set, the ASCII export file created
by dbexport must be edited to conform with the new structure, or dbexport and
dbimport must be used in -r (restructure) mode.

** Certain changes cannot be made to strings used as search items. For example,
decreasing the string length may cause a duplicate search item value in a master
data set. Increasing the length of a search item value causes no problems.

*** Numeric value conversions are performed between integer, dinteger, short,
and real values. The resulting item values are as close to the starting values as the
destination item type permits.

**** Requires dbexport and dbimport to be used in restructure mode.

273

Obsolete Database Utilities
The DBUTIL program

The DBUTIL program

Introduction

Dbutil provides all functionality of the former DBMODS utility and additionally
provides the ability to change some aspects of the database structure without hav-
ing to export/import the database.

Database changes can either be defined interactive or by a script file (called con-
trol script). This makes it possible for a software vendor to provide a control script
to a customer to perform database changes without manual interaction. The dbutil
may even be used to interactively create a control script.

The following actions can be performed:

❒ Set the maintenance password
❒ Define access classes
❒ Grant or revoke access to datasets
❒ Create a new data item
❒ Change data item definition
❒ Create a new index item
❒ Change index item definition
❒ Create a new data set
❒ Add new data items to a data set
❒ Add new indices to a data set
❒ Additionally, in interactive mode, it is possible to print a schema definition of the data-

base.

DBUTIL commandline arguments

Synopsis:

 usage: dbutil [options] [file]

 options:

 -help = show usage (this list)
 -i = interactive mode (batch mode only)
 -n = pretend (batch mode only)
 -v = verbose (batch mode only)
 -e cnt = abort processing after encountering cnt errors
 -t tmp = where temporary files are stored
 -d = debug

274

Obsolete Database Utilities
The DBUTIL program

If a file argument is present, dbutil will process in batch mode unless the-i
option is present. If the-n option is present, no changes will be made to the data-
base. Processing will end after checking the input file and the analysis phase.

Arguments:

-i After processing the supplied batch file, dbutil will change into
interactive mode, so you can verify the database changes made
so far or you can add additional changes. Interactive mode is
the default, if no control file is specified on the command line.

-n dbutil will analyze the control file but will not make any
changes to the database. This option can be used to check the
syntax of the control file or to get an overview which changes
would be applied to the database.

-v[v] Specifying the -v option will cause dbutil to output a summary
of changes after analyzing the control file and some descriptive
text during the database restructuring.

Specifying two -v options will cause dbutil to echo the control
file to stdout as it is analyzed.

-e cnt Abort processing the control file after encountering the given
number of syntax or validation errors.

-t tmp This option makes it possible to specify where temporary files
will be created. As temporary files can become quite huge, it
may overflow the default location.

If the -t argument is not specified, dbutil will allocate tempo-
rary files at the same location as the database.

-d This is used internally to debug dbutil itself. You should not use
it.

If a file argument is present, dbutil will process in batch mode unless the-i
option is present.

Dbutil execution

Dbutil will execute in different phases:

1 If a control file is given on the command line, it will analyze the control file and all
changes imposed by the control file.

2 If the interactive mode is requested by either specifying the -i argument or by omitting
the control file, it will change into interactive mode.

275

Obsolete Database Utilities
The DBUTIL program

3 Finally it will analyze all changes and list the restructure operations it needs to perform.
If the -n argument is present execution will stop here.

4 If stdout and stdin are connected to a tty device, dbutil will prompt for a confirmation
to apply the database changes. This is the last chance to change your mind. If you in-
terrupt the program beyond this point, your database will be lost and you have to restore
it from your backup.

5 Finally dbutil will start to restructure the database.

Example

 $ dbutil test/du5

 B1368B DBUTIL (C) COPYRIGHT MARXMEIER SOFTWARE AG 2002 (A.05.10)

 Analyzing restructure specification ...
 Analysis completed successfully

 Checking database consistency ...
 Consistency check completed successfully

 Database restructure analysis:

 Analyzing changes:
 NEW-SET-M
 * this is a new data set
 Estimated temporary disc space required: 1 MB

 NEW-SET-D
 * this is a new data set
 Estimated temporary disc space required: 1 MB

 Estimated temporary disc space required: 1 MB

 Temporary files will be created at
 /disc/project/eloq/db2/ndbmods/test/db/

 Available disc space: 147 MB

 Data restructure process required.

 --
 PLEASE NOTE:
 If the restructure process fails or is interrupted, YOUR
 DATA BASE IS LOST and can only be recovered from a backup.
 If you don't have a current backup, you should NOT continue.
 --

 Continue with database restructure (y/n) ? y

 CAUTION: DO NOT INTERRUPT THIS PROGRAM!

 Removing current ROOT file

 Restructuring database ...
 NEW-SET-M
 NEW-SET-D

 Dumping new ROOT file /disc/project/eloq/db2/ndbmods/test/db/DB

276

Obsolete Database Utilities
The DBUTIL program

 End of Database Maintenance Utility

Control file syntax

The dbutil control file is a plain text file. The following general rules apply:

❒ Everything after a hash character (#) is considered a comment and will be ignored.

❒ dbutil does recognize keywords in either upper or lower case (but not mixed).

❒ Each statement must be delimited by a semicolon (;)

❒ Identifiers such as Item, Index and Set-names may be specified in either case (upper/
lower case).

❒ Strings must be enclosed in double quotes. To include a quote character in a string, the
quote character must be preceded by a backslash (\) character.

❒ A statement may span multiple lines.

❒ Some statements allow repeating a list of definitions by enclosing it in curly braces.

The syntax description below use the following conventions:

❒ All keywords are given in upper case.

❒ All Identifiers, such as Item, Index and Set names are given in upper/lower case.

❒ Optional syntax elements are enclosed in brackets.

277

Obsolete Database Utilities
The DBUTIL program

Opening the database

OPEN DATABASE "database" [PASSWORD "password"] ;

database The database argument specifies the database path and name.
The database path may be specified either by giving a HP-UX
path or a Eloquence volume.

password The password argument specifies the database maintenance
password. The PASSWORD clause is not required if the data-
base has no maintenance password or you are the superuser
(root).

For example:

 OPEN DATABASE "/opt/sqlr/db.g/db";

This opens the database "db" located in directory/opt/sqlr/db.g .

 OPEN DATABASE "test,DB" PASSWORD "secret";

This opens the database "TEST" at the path described by the Eloquence
volume "DB".

278

Obsolete Database Utilities
The DBUTIL program

Changing access passwords

The Eloquence database has 32 access profiles. The access profile is selected dur-
ing database open, depending on the given password. If no password is given, or
there is no password at all, access profile 0 (PUBLIC) is selected.

ALTER PASSWORD
acl_no ["password"];

ALTER PASSWORD {
acl_no ["password"];

 ...
}

Access profiles 1 to 31 are associated with a password. Omitting the password
(and specifying only the access class) will cause the password for this class to be
removed and the access class become disabled. The password must not exceed 8
characters.

If enclosed in curly braces, multiple passwords can be defined.

For example:

 ALTER PASSWORD
 1 "GuessMe";

This defines the password "GuessMe" for access profile 1.

 ALTER PASSWORD {
 3;
 4 "Manager";
 }

This statement disables the access profile 3 (by removing the password) and
defines the password "Manager" for access profile 4.

279

Obsolete Database Utilities
The DBUTIL program

Granting access

GRANT privilege ACCESS
 ON target_list
 TO acl_list;

Where privilege is one of:

READ Allow read access
WRITE Allow read and write access
ALL Same as WRITE

The target_list is eitherALL or a list of data set identifiers separated by a
comma (,). IfALL is specified, the privilege will be granted to all data sets.

Theacl_list is a list of access profile numbers separated by a comma (,). The
keywordPUBLIC may be used as a synonym for access class 0.

For example:

 GRANT READ ACCESS
 ON Customers,Parts,Orders,Order-Entries
 TO PUBLIC;

This will allow read access to the data sets Customers,Parts,Orders and Order-
Entries to everyone.

 GRANT WRITE ACCESS
 ON Customers,Parts,Orders,Order-Entries
 TO 1,2,3;

Write access to the given sets is enabled for members of the access class 1, 2 or 3.

280

Obsolete Database Utilities
The DBUTIL program

Revoking access

REVOKE privilege ACCESS
 OF target_list
 FROM acl_list;

Where privilege is one of:

READ Deny read access
WRITE Deny read and write access
ALL Same as WRITE

The target_list is eitherALL or a list of data set identifiers separated by a
comma (,). IfALL is specified, the privilege will be revoked from all data sets.

Theacl_list is a list of access profile numbers separated by a comma (,). The
keywordPUBLIC may be used as a synonym for access class 0.

For example:

 REVOKE ALL ACCESS
 OF Budget
 FROM PUBLIC;

This revokes any access to the data set Budget for members of the access profile
PUBLIC.

 REVOKE WRITE ACCESS
 OF Parts
 TO 1,2;

This statement revokes write access on data set Parts for members of access pro
files 1 and 2.

281

Obsolete Database Utilities
The DBUTIL program

Creating a new data item

CREATE ITEM
 Ident, [count] type [(format)];

CREATE ITEM {
 Ident, [count] type [(format)];
 ...
}

Ident is the item name,count is the optional subitem count,type is the item
type, format is an optional format number.

If the statement is enclosed in curly braces, multiple items can be defined.

Item type is the same as defined by the schema processor and must be one of:

I, I2 Allow read access
I4, D Allow read and write access
R4, S Short REAL
R8, L REAL
Xn String, size specified by n must be even

The format number may be an arbitrary number. It may be retrieved using
DBINFO and is used by the QUERY program to define the item output format.

The QUERY format number is composed by adding the various values, which are
given after the plus sign.

Table 30 Query format numbers

Bits
Field

description
Field
value

Description
add

value

0 Item Protection 0 Item value may be changed in
QUERY

0

1 Item is write protected 1

1-2 Item type 0 default 0

1 date type (days since 1972) 2

2 Currency 4

3 Undefined 6

282

Obsolete Database Utilities
The DBUTIL program

For example:

 CREATE ITEM
 Call-Id, D (2);

This defines the data item Call-Id of type 'D' with format number 2.

 CREATE ITEM {
 Call-Id, D;
 Call-Date, D (2);
 Call-Desc, 2X40;
 }

This defines the data itemsCall-Id , Call-Date andCall-Desc .

3 Item spacing 0 default 0

1 Comma every 3 digits 8

4-6 Post decimals 0 default 0

1 FIXED 0 16

2 FIXED 1 32

3 FIXED 2 48

...

7 FIXED 6 112

Table 30 Query format numbers

Bits
Field

description
Field
value

Description
add

value

0 Item Protection 0 Item value may be changed in
QUERY

0

283

Obsolete Database Utilities
The DBUTIL program

Changing data item definition

ALTER ITEM Ident {
 [NAME = Ident;]
 [TYPE = [count] type [(fmt)];]
 [TYPE = (fmt);]
}

Ident is the item name,count is the optional subitem count, type is the item
type, format is an optional format number.

The subitem count cannot be changed, if the data item is used as a search item or
is included in an index item. The length of a string item cannot be reduced if it is
used as a search item.

Changing the item type does will convert all values to the new item type.

Multiple item attributes must be enclosed in curly braces.

For example:

 ALTER ITEM Phone-No
 TYPE = X12;

This does change the type of the itemPhone-No to an eight character string.

 ALTER ITEM Phone-No {
 NAME = Phone;
 TYPE = 2 X20;
 }

This does change the item name fromPhone-No to Phone, the subitem count to
two and the item type to a twenty character string.

284

Obsolete Database Utilities
The DBUTIL program

Creating a new index item

CREATE IITEM
 Iident = Ident[:length] ...;

CREATE IITEM {
 Iident = Ident[:length] ...;
 ...
}

Iident is a new index item name,Ident is an existing item name and the
optionallength clause specifies a different index segment length. The index item
name may not be defined as an item. Up to 7 index segments can be specified, sep-
arated by a comma (,).

If enclosed in curly braces, multiple index items can be defined.

For example:

 CREATE IITEM
 ICall-Id = Call-Id;

This defines a new index item named ICall-Id using the value of the data item
Call-Id.

 CREATE IITEM
 ICall-Id = Call-Date, Call-Id;

This defines a new index item namedICall-Id combining the itemsCall-
Date andCall-Id .

285

Obsolete Database Utilities
The DBUTIL program

Changing data item definition

ALTER IITEM Ident {
 [NAME = Iident;]
 [TYPE = Ident[:length] ...;]
}

Iident is a new index item name,Ident is an existing item name and the
optionallength clause specifies an different index segment length. The index
item name may not be defined as an item.

Up to 7 index segments can be specified, separated by a comma (,).

For example:

 ALTER IITEM ICall-Id {
 NAME = IX-Call-Id;
 TYPE = Call-Id;
 }

This changes the index item name fromICall-ID to IX-Call-Id and defines
that the index is built using the value of the data itemCall-Id .

286

Obsolete Database Utilities
The DBUTIL program

Creating a new data set

CREATE SET SetIdent type {
 Ident [(MasterSetIdent)];
 ...
}

SetIdent is the name of a new data set,type is the data set type.

The optionalMasterSetIdent is the name of a master data set.

Type must be one of:

M or MASTER Master data set
A or AUTOMATIC Automatic data set
D or DETAIL Detail data set

For example:

 CREATE SET Calls, D {
 Call-Id(Id);
 Call-Date;
 Call-Desc;
 }

This creates the new detail data setCalls containing the data itemsCall-Id ,
Call-Date andCall-Desc .

The data itemCall-Id is used as a search item with the master setId .

287

Obsolete Database Utilities
The DBUTIL program

Changing a data set:

The ALTER SET statement can be used to

• change data set properties
• add new data items to an existing data set
• add a new index to an existing data set

ALTER SET SetIdent
{
 [NAME = SetIdent;]
 [CAPACITY = number;]

 [ADD ITEM {
 [Ident [(MasterSetIdent)];]
 }]

 [ADD INDEX
 Iident [/"collate"];]
}

SetIdent is the name of an existing data set, capacity is the capacity value.

Ident is an existing item name, the optional MasterSetIdent is the name of a mas-
ter data set. A path can only be specified on new data sets.

Iident is an existing index item name, collate is the name of a collating sequence.
The collating sequence name consists of a locale name and optional the modifier
fold or nofold separated by an at (@) character. Please refer to the section "Col-
lating sequences" for a description on collating sequences.

Changing Set properties

For example:

 ALTER SET Calls {
 NAME = TheCalls;
 CAPACITY = 0;
 }

This changes the data set name from Calls to TheCalls and the data set Capacity to
zero.

288

Obsolete Database Utilities
The DBUTIL program

Adding a data item

For example:

 ALTER SET Calls {
 ADD ITEM {
 Call-Id(Id);
 Date;
 Code;
 Call-Desc;
 }
 }

This adds four data items to the data set Calls. The Item Call-Id is used as a search
item with an associated Master data set Id.

Adding an index

For example:

 ALTER SET Calls {
 ADD INDEX ICall-Id;
 ADD INDEX ICode / "german@fold";
 }

This will add two indices to data set Calls. The index ICode does use the collating
sequence "german@fold".

289

Obsolete Database Utilities
The DBUTIL program

Example script

open database

DATABASE "db,DB" PASSWORD "Secret";

passwords

ALTER PASSWORD {
 1 "READ";
 2 "WRITE";
}

permissions

REVOKE ALL
OF ALL
FROM ALL;

GRANT READ
ON ALL
TO 1;

GRANT ALL
ON ALL
TO 2;

items

CREATE ITEM {
 Call-Id, D;
 Date, D (2);
 Code, X20;
 Description, 4X40;
}

iitems

CREATE IITEM
 ICall-Id = Call-Id;

CREATE IITEM
 ICode = Code:10;

set

CREATE SET Calls, D {
 Call-Id;
 Date;
 Code;
 Call-Desc;
}
ALTER SET Calls
{
 ADD INDEX ICall-Id;
 ADD INDEX ICode / "german@fold";
}

290

Obsolete Database Utilities
The DBUTIL program

Interactive usage

The following general rules apply:

• If a Push button starts with a number, you can press the equivalent function key as an
accelerator. For example[8. Exit] can be triggered with the function keyF8.

• An underlined character indicates that the associated function can be reached by press-
ing function keyF2 and the underlined character.

• An entry in a selection list can be selected by pressing theRETURN key or by pressing
thespace bar.

• There is currently no functionality associated with the help push button.

The Entry dialog

This dialog appears if dbutil is executed in interactive mode. The following dialog
elements are present:

Database The database name and path
Maintenance Password The database maintenance password
Log Shows the log window
Accept Open the database
Exit Exit the program

The Main dialog

The following dialog elements are present:

Log Shows the log window
Exit Exit the program. If there are unsaved changes, the exit

dialog will appear.

The following functions can be selected from the selection list:

• Change maintenance password
• Change password or access
• Data Items
• Index Items
• Data sets
• Add Data Item to Set
• Add Index Item to Set
• Print Schema definition
• Analyze changes
• Apply changes

The Log dialog

291

Obsolete Database Utilities
The DBUTIL program

The log windows holds a log of the most recent performed operation. If an error is
encountered, the log dialog pops up automatically. The following dialog elements
are present:

Close Close the log window

The Exit dialog

The exit dialog pops up, if you are about to leave the program while while your
changes have not been saved. The following dialog elements are present:

Save changes If you select this checkbox and enter a file name in the fol-
lowing field, your changes are saved in a session script.

Accept Exit the program. If selected, your changes are saved to a
session script file.

Cancel Don’t exit the program, return to main dialog.

The Maintenance Password dialog

The following dialog elements are present:

Accept Save changes.
Cancel Discard changes, return to main dialog.

The Password dialog

This shows a list of all database access classes along with the password and an
access summary. The first access class is PUBLIC which is used, if no password is
provided to DBOPEN or no password is defined for the database. The R gives the
number of data sets, this access class has READONLY access t, the W gives the
number of data sets, this access class has READ/WRITE access to.

By selecting an access class, the access class properties dialog is opened. The fol-
lowing dialog elements are present:

Cancel Discard changes, return to main dialog.

The Access class properties dialog

In the Access Class properties dialog, you can change the password or the access
rights associated with an access class. The following dialog elements are present:

Password Change the password associated with access class. If the
password is empty, the access class becomes disabled. You
cannot assign a password for the PUBLIC access class.

Read/Write Select this to select or modify the data sets, the current
access class has READ/WRITE access to.

Read only Select this to select or modify the data sets, the current

292

Obsolete Database Utilities
The DBUTIL program

access class has READ ONLY access to.
Log Shows the log window
Accept Save changes, return to password dialog.
Cancel Discard changes, return to password dialog.

To change the access rights for the current access class, select the Read/Write or
Read Only push buttons. This opens the Data Set Selection dialog. It will display
the list of data sets. In front of the data set name is a checkbox. If selected, the
specified access is allowed for the current access class. If you select a data set, the
access is changed.

The Data Item List dialog

This dialog shows all or a subset of the data items in your data base. By selecting
a data item, the Data Item Properties dialog is opened. The following dialog ele-
ments are present:

Filter The value entered in this field is used to select, which data
items should be displayed. If this field is not empty, only
data matching items are displayed

By Set If selected, the value of the Filter field is considered a data
set name. Only data items present in the selected data set
are displayed.

Log Shows the log window
Create Opens the Item properties dialog to create a new data item.
Close Close window, return to main dialog.

The Item Properties dialog

The following dialog elements are present:

Item Name The data item name
Item Count Number of elements
Item Type Select an item type
Size This is only used if the item is of type String. This is the

maximum number of characters this item can hold. Size
must be an even value.

Item Format The item Format. This information can be used by
QUERY or other programs to format their output. Please
refer to the table "Query Format Numbers" for more infor-
mation.

Log Shows the log window
Accept Save changes.
Cancel Discard changes, return to previous dialog.

The Index Item List dialog

293

Obsolete Database Utilities
The DBUTIL program

This dialog shows all or a subset of the index items in your data base. By selecting
a data item, the Index Item Properties dialog is opened. The following dialog ele-
ments are present:

Filter The value entered in this field is used to select, which
index items should be displayed. If this field is not empty,
only data matching items are displayed

By Set If selected, the value of the Filter field is considered a data
set name. Only data items present in the selected data set
are displayed.

Log Shows the log window
Create Opens the Item properties dialog to create a new index

item.
Close Close window, return to main dialog.

The Index Item Properties dialog

The following dialog elements are present:

Name The index item name
Segment / Item Data item name for this index segment
Segment / Length If this is a string item, only a leading part of the item may

be used in the index.
Log Shows the log window
Accept Save changes.
Cancel Discard changes, return to previous dialog.

The Data Set List dialog

This dialog shows all or a subset of the data sets in your data base. By selecting a
data set, the Data Set Properties dialog is opened. The following dialog elements
are present:

Filter The value entered in this field is used to select, which data
sets should be displayed. If this field is not empty, only
matching data sets are displayed

Log Shows the log window
Create Opens the data set properties dialog to create a new data

set.
Close Close window, return to main dialog.

The Data Set Properties dialog

The following dialog elements are present:

Set Name The data set name
Set Type Select a set type

294

Obsolete Database Utilities
The DBUTIL program

Capacity The data set capacity.
Log Shows the log window
Accept Save changes.
Cancel Discard changes, return to previous dialog.

The Data Set Entry dialog

This dialog is opened by selecting one of the following entries from the main dia-
log after selecting an Data Set from the Data Set Selection Dialog.

• Add Data Item to Set
• Add Index Item to Set

The dialog display the data or index items for the selected data set. The following
dialog elements are present:

Log Shows the log window
Add Item Opens the Data Item or Index Item dialog.
Close Close window, return to main dialog.

The Print Schema Definition dialog

The following dialog elements are present:

Write to file Output Schema definition to file if selected.
File File name and path.
Print to HP-UX printer Output Schema definition to printer if selected
Printer Printer name (and additional options).
Lines/Page Number of lines / Page. Use zero to avoid no pagination.
Log Shows the log window
Accept Create Schema definition.
Cancel Return to main dialog.

The Analyze dialog

The log windows holds a summary of all pending operations. The following dia-
log elements are present:

Close Close the window

The Apply dialog

The exit dialog pops up, if you are about apply your changes to your database.
The following dialog elements are present:

Save changes If you select this checkbox and enter a file name in the fol-
lowing field, your changes are saved in a session script.

Analyze This pops up the Analyze dialog. If summarizes the pend-

295

Obsolete Database Utilities
The DBUTIL program

ing changes.
Accept Apply changes to your database. If selected, your changes

are saved to a session script file.
Cancel Don’t apply changes, return to main dialog.

296

Obsolete Database Utilities
The dbmods Program

The dbmods Program

The database modification (dbmods) utility program allows the user to make cer-
tain changes in the database structure without the need to unload and load data
stored in the database. dbmods can be used to modify database passwords, user-
class accesses, item names, item format numbers, set names, set capacities, and
database volume labels. These changes do not affect data stored in the database.
However, modifications made by dbmods may require minor changes to any
application programs that access the database.

The dbmods utility program maintains two modification counts associated with
the root file. One count, the password modification count, is increased when any
passwords (including the maintenance word) are modified. A second count, the
database modification count, is increased when any other changes are made to the
root file. No changes are made to the modification count unless the root file is
actually modified by the program. These counts enable the user to detect unautho-
rized database modifications made via the utility program.

To run the dbmods utility program, execute the following from the HP-UX
prompt:

 dbmods

The initial menu requests the database name, root file volume specifier, and the
maintenance word (if used), as shown by the following screen:

297

Obsolete Database Utilities
The dbmods Program

After entering all items and pressing ACCEPT DATA, the utility opens the data-
base and displays the menu shown next. An error message indicates if the root file
cannot be found or the database has already been opened by another user. If an
error occurs, either re-enter another database name or press EXIT PROGRAM.

The main selection menu allows you to run any of the list and modification rou-
tines. Each is explained in the following pages. The example screens used here
show information obtained from the SAD (sales analysis) database.

List and Modify Passwords

Press the PASSWORD softkey from the main selection menu to list and modify
all database passwords and to modify user-class access capabilities. The Pass-
words menu displays all user passwords and the maintenance word. Here is a sam-
ple Passwords screen:

298

Obsolete Database Utilities
The dbmods Program

To modify the maintenance word, passwords, or user-class access, press the
appropriate softkey and enter the requested items.

Press PRINT SCREEN to obtain a hard-copy output of the password list on the
currently selected printer (see page 302 later in this chapter).

Press EXIT to return to the previous menu.

List and Modify Items

Press the ITEM softkey from the main selection menu to list and modify data item
names and format numbers. The Items menu displays all data item names and
numbers in the database. Here is a sample Items screen:

299

Obsolete Database Utilities
The dbmods Program

The SELECT GROUP softkey allows you to select alternate ways of displaying
data items—by schema number or by data set order. When items are listed in data
set order, all items for a particular data set are listed in schema definition order. If
more than 30 items have been selected, additional items may be displayed using
the NEXT GROUP and PREVIOUS GROUP softkeys.

The MODIFY ITEM softkey allows you to change item names and format num-
bers. Any item in the database can be modified; it need not be currently displayed.

Press PRINT SCREEN to obtain a hard copy of the current item list on the cur-
rently selected printer (see page 302 later in this chapter).

Press EXIT to return to the previous menu.

List and Modify Index Items

Press the IITEM softkey from the selection menu to list and modify index item
names. The Index Item menu displays all the index item names in the data base.
Here is a sample Index items screen:

300

Obsolete Database Utilities
The dbmods Program

The SELECT GROUP softkey allows you to select alternative ways of displaying
index items - by schema number or by data set order. When index items are listed
in data set order, all index items for a particular data set are listed in schema defi-
nition order. If more than 30 index items have been selected, additional index
items may be displayed using the NEXT GROUP and PREVIOUS GROUP soft-
keys.

The MODIFY IITEM softkey allows you to change index names. Any index item
in the database can be modified. It need not be currently displayed.

Press PRINT SCREEN to obtain a hard copy of the current index item list on the
currently selected printer (see “Select Printer” later in this chapter.)

Press EXIT to return to the previous menu.

List and Modify Data Sets

Press the SET softkey from the main selection menu to list and modify data set
names, volumes, capacities, and user-class access. The Sets menu displays the
first 20 data set names, along with their associated volume labels and capacities. If
more than 20 sets are found, NEXT GROUP and PREVIOUS GROUP softkeys
appear to allow reviewing all data sets. Here is a sample Sets screen:

301

Obsolete Database Utilities
The dbmods Program

The SELECT GROUP softkey allows you to select alternate ways data sets are
listed. You can list sets in schema order (ascending set number order), by data set
volume order, or by user-class number. When sets are listed in data set volume
order, all sets stored on a particular volume are listed in schema definition order.
When sets are listed by user-class number, all sets accessible by a particular user-
class number are listed in schema definition order.

The MODIFY SET softkey allows you to change data set names, set volume
labels, and set capacities. When a volume label is changed on a created data set,
the entries in the existing data set are copied to the new volume. Any data set in
the database can be modified regardless of which sets are currently displayed. The
set capacity field is for informational purposes only. It increases automatically as
new entries are added to a data set. If entries are deleted, the number displayed
does not automatically decrease. This provides you with information on the maxi-
mum number of entries ever in the data set. This field can be reset.

Print Schema Listing

Press the PRINT SCHEMA softkey from the main selection menu to generate a
schema definition of the database. A screen similar to the following is displayed:

302

Obsolete Database Utilities
The dbmods Program

Press PRINT SCHEMA to obtain a hard copy of the schema listing on the cur-
rently set printer (see page 302).

Press PRINT TO FILE to copy the schema listing to a DATA file. If the specified
DATA file does not already exist, the utility creates a new file. After the schema
definition is copied to a DATA file, the file can be edited and used by the schema
program.

Press EXIT to return to the main selection menu.

Select Printer

Press the SELECT PRINTER softkey from the main selection menu to specify the
output device used for dbmods print operations. A screen similar to the following
is displayed:

303

Obsolete Database Utilities
The dbmods Program

Press SELECT PRINTER to change the default device used for dbmods print
operations. An error indicates if the selected device is not on line or not ready.

Press SET LINES PER PAGE to change the default page length. The range is
from 20 through 200 lines per page.

Press EXIT to return to the main selection menu.

304

Obsolete Database Utilities
The DBPASS Statement

The DBPASS Statement

The DBPASS statement allows you to change the password for a stated user class
number. Syntax for this statement is as follows:

 DBPASSroot file spec, user-class number, old password TO new password

The root file spec is a string expression containing the root file name and, option-
ally, its volume specifier. The user-class number is a numeric expression ranging
from 1 through 31. The old password and new password parameters are string
expressions from 0 through 8 characters in length and may be terminated by a
space or semicolon. Longer strings are automatically truncated. Allowable char-
acters are A through Z, 0 through 9, and the underscore character “_”. The old
password specified must match the corresponding password on the root file. For
example, the following statement changes the password FRED to FRIEDA for
user class 1:

 DBPASS ”LEDGER”,1,”FRED” TO ”FRIEDA”

305

Obsolete Database Utilities
The DBMAINT Statement

The DBMAINT Statement

The DBMAINT statement allows you to change the maintenance password for a
specified database. Syntax for this statement is as follows:

 DBMAINT root file spec, old word TO new word

The root file spec is a string expression containing the root file specifier and,
optionally, its volume specifier. The old word and new word parameters are string
expressions from 0 through 16 characters. Allowable characters are A through Z,
0 through 9, and the underscore character “_”. The old word specified must match
the current maintenance word for the database. The maintenance word is estab-
lished when the root file is created via the DBCREATE statement. For example,
the following statement changes the maintenance password for the LEDGER
database from SECRET to MANAGER:

 DBMAINT ”LEDGER”, ”SECRET” TO ”MANAGER”

306

Obsolete Database Utilities
The READ DBPASSWORD Statement

The READ DBPASSWORD Statement

The READ DBPASSWORD reads all user passwords from the specified database
into a string array. Syntax for this statement is as follows:

 READ DBPASSWORDroot file spec, maintenance word; string array variable

The string array must have at least 31 elements, with a dimensioned length of at
least eight characters long. Passwords are read into array elements in numerical
order, beginning with the password for user-class number 1. If no password exists
for a user-class number, that array element is filled with eight spaces. Here is a
program sequence which reads and displays the user passwords from a root file
named PAYROL.

10 OPTION BASE 1
20 DIM Pass$(31) [8]
30 READ DBPASSWORD “PAYROL”,”MANAGER”;PASS$(*)
40 DISP “User-class Numbers and Passwords on the PAYROL Database.”
50 DISP
60 FOR Num=1 TO 31
70 IF Pass$(Num)<>” “ THEN DISP Num;Pass$(Num)
80 NEXT Num
90 END

307

Obsolete Database Utilities
The WRITE DBPASSWORD Statement

The WRITE DBPASSWORD Statement

The WRITE DBPASSWORD statement replaces all passwords in the specified
root file with those in a specified string array. Syntax for this statement is as fol-
lows:

 WRITE DBPASSWORD rootfile spec, maintenance word; string array variable

The string must contain at least 31 elements, with a dimensioned length of a least
eight characters. The string in the first element becomes the password for user-
class number 1; the second string becomes the password for user-class number 2;
and so on. Passwords are between 0 through 8 characters and may be terminated
by a space or semicolon. Longer strings are automatically truncated. If an element
in the string array is null or if the first eight characters are blanks, the correspond-
ing user-class number is not assigned a password.

Here is a program which lists, and then allows the user to change, passwords for a
specified database:

10 OPTION BASE 1
20 ON HALT GOTO Exit
30 DIM Pass$(31)[8],File$[13],Maint$[8]
40 INTEGER Num,Unc
50 DISP “ “,SPA(24); “ EDIT DATABASE PASSWORD “
60 START: !
70 ON ERROR GOTO Trapperr
80 CURSOR (1,20),UL(80),(1,21) !Draw prompt line.
90 INPUT “Enter root file name (and volume spec):”;File$
100 INPUT “ Enter maintenance password:”;Maint$[1;8]
110 CURSOR (1,21)
120 DISP “ Reading passwords.”
130 READ DBPASSWORD File$,Maint$;Pass$(*)
140 Disp_list: ! Display password list.
150 CURSOR (14,4)
160 DISP “User-class Numbers and Passwords on “;TRIM$(File$) ;”Da-
tabase.”
170 DISP
180 FOR num=1 TO 28 STEP 4
190 DISP SPA(6);Num;Pass$(Num),Num+1;Pass$(Num+1),Num+2,
Pass$(Num+2),Num+3;Pass$(Num+3)
200 NEXT Num
210 DISP SPA(6);29;Pass$(29),30;Pass$(30),31;Pass$(31)
220 Edit: !
230 CURSOR (1,21)
240 Ucn=0
250 INPUT “ Enter password number to edit :”;Ucn
260 IF NOT Ucn THEN Done ! Exit if no number entered.
270 IF (Ucn<1) OR (Ucn>31) THEN 240 ! Loop if ucn out of range.
280 EDIT “Edit password:”,Pass$(Ucn)[1;8]
290 GOTO Disp_list ! Re-display passwordlist.
300 Done: ! Write passwords on root file.
310 CURSOR (1,21)

308

Obsolete Database Utilities
The WRITE DBPASSWORD Statement

320 DISP “‘‘Writing passwords.”
330 WRITE PASSWORD File$,Maint$;Pass$(*)
340 Exit: !
350 DISP “ End of program.”
360 STOP
370 Trapperr: !
380 BEEP
390 CURSOR (1,19) ! Position cursor above line.
400 DISP “~”
410 SELECT ERRN
420 CASE 56
430 DISP “FILE NAME NOT FOUND. TRY AGAIN.”
440 CASE 81 TO 99
450 DISP “FILE SYSTEM (DIRECTORY) PROBLEM”;ERRN;”.”
460 WAIT 2000
470 GOTO Exit
480 CASE 220
490 DISP “INCORRECT PASSWORD. TRY AGAIN.”
500 CASE ELSE ! Display any other error here.
510 DISP ERRMS$
520 WAIT 2000
530 GOTO Exit
540 END SELECT
550 WAIT 2000
560 DISP “ “
570 GOTO Start
580 END

DRAFT 309

Index

Symbols
$CONTROL statement 52
$PAGE statement 52
$TITLE statement 52

A
advanced access statements 99
automatic master data sets 32

C
calculated access 29
chained access 28, 79
collating sequence 43
creation of database 149
current record 27

D
data access 27
data chain 25
data path 25
data set types 25
database 16
database definition 42
database definition and creation 149
database design 142
database locking 170
database restructuring 135, 271
database structure 23
DBASE IS 99
DBBEGIN 91
DBCLOSE 67
DBCOMMIT 92
DBCREATE 123
DBDELETE 75
DBERASE 125
DBEXPLAIN 90

310 DRAFT

dbexport 132
DBFIND 77
DBGET 69
dbimport 134
DBINFO 83
DBLOCK 94
DBLOGON 62
dblogreset 110
DBOPEN 63
DBPURGE 129
DBPUT 73
DBROLLBACK 93
dbstatus 268
DBUNLOCK 97
DBUPDATE 72
dbvolchange 109
dbvolcreate 107
dbvolextend 108
definition of database 149
design database 142
detail data set definition 49
detail data sets 25
directed access 28

E
ERRMESS 198

I
IN DATA SET 99
index item definition 46
indexed access 30, 79
item definition 44

L
list data sets 300
list index items 299
list items 298
list passwords 297
lock conflicts 174

DRAFT 311

lock descriptors 170
locking database 170

M
manual data sets 32
master data set definition 47
master data sets 25
modify data sets 300
modify index items 299
modify items 298
modify passwords 297

P
PACK USING 181
PACKFMT 180
password definition 43
passwords 33
PREDICATE 103
predicates 172
print schema listing 301
printer select 302
programming examples 151

R
regular expressions 81
restructuring database 271

S
schema listing print 301
schema program 55
schema statements 52
search item 25
select printer 302
serial access 27
set definition 47
standalone detail set 50

T
Transactions 91

312 DRAFT

types of data set 25

U
UNPACK USING 182
user class numbers 33

